

------~-

TERMS AND CONDITIONS OF SALE AND LICENSE OF RAOtO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS
A CUSTOMER assumes lull responsibility that this Radio Shack computer hardware purchased (the "Equipment"), and any copies of Radio

Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capab1l1ties,
versat1l1ty, and other requirements of CUSTOMER
CUSTOMER assumes full respons1b1l1ty for the cond1t1on and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its 1nstallat1on

IL RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored 1s free from manufacturing
defects THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION The warranty is void 11 the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
sub1ected to improper or abnormal use If a manulactunng defect 1s discovered during the stated warranty penod, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy ,n the event of
a defect ,s l1m1ted to the correction of the defect by repair. replacement. or refund of the purchase pnce, at RADIO SHACK'S election and sole
expense RADIO SHACK has no obl1gat1on to replace or repair expendable ,terns
RADIO SHACK makes no w~rranty as to the design, capability, capacity, or suitability for use of the Software, except as provided ,n this
paragraph Software 1s licensed on an "AS IS" basis, without warranty The ong,nal CUSTOMER'S exclusive remedy, ,n the event of a
Software manufacturing defect, is ,ts repair or replacement w1th1n thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document
Except as provided herein no employee, agent. franchisee. dealer or other person 1s authorized to give any warranties of any nature on behalf
of RADIO SHACK

D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE,
Some states do not allow l1m1tat1ons on how long an implied warranty lasts, so the above l1m1tat1on(s) may not apply to CUSTOMER

IIL LIMITATION OF LIABILITY

A EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
'EQUIPMENT' OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE" IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE' EQUIPMENT" OR' SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE"
INVOLVED,

--\
''---

- -• -·
B RADIO SHACK shall not be liable tor any damages caused by delay m delivering or furn1shIng Equipment and!Dr Sottware.
C No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

atter the cause of action has accrued or more than tour 14) years atter the date al the Radio Shack sales document lor the Equipment or
Software, whichever first occurs

0. Some states do not allow the lrm1tat1on or exclusion al incidental or consequential damages. so the above l1mitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Sottware on one computer, sub1ect to the following
provisions.
A Except as otherwise provided 1n this Sottware License, applicable copyright laws shall apply to the Sottware
B Title to the medium on which the Sottware 1s recorded (cassette and!or diskette) or stored (ROM) 1s translerred to CUSTOMER, but not title to

the Software
C CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function
D CUSTOMER shall not use, make, manufacture, or reproduce copies al Sottware except for use on one computer and as is specrlically

provided 1n this Sottware License Customer 1s expressly prohibited ·1rom disassembling the Sottware
CUSTOMER 1s permitted to make additional copies ol the Sottware only lor backup or archival purposes or ii additional copies are required in
the operation at one computer with the Sottware, but only to the extent the Sottware allows a backup copy to be made However, for
TRSDOS Sottware, CUSTOMER is permitted to make a limited number ol additional copies lor CUSTOMER'S own use

F. CUSTOMER may resell or distribute unmodilred copies ol the Sottware provided CUSTOMER has purchased one copy of the Sottware lor each
one sqld or distributed The provisions of this Sottware Lrcense shall also be applrcable to third parties receiving copies ol the Sottware lrom
CUSTOMER

G All copyright notices shall be retained on all copies ol the Sottware

V. APPLICABILITY OF WARRANTY

A The terms and conditions ol this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale ot the Equipment and1or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party lor lease to
CUSTOMER.

B The limitations al liability and Warranty prov1s1ons herein shall inure to the benelit ol RADIO SHACK, the author, owner and/or licensor of the
Software and any manufacturer ol the Equipment sold by RADIO SHACK

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER spec1f1c legal nghts, and the original CUSTOMER may have other nghts which vary
tro m state to state

SERVICE POLICY
Radio Shack's nationwide network of service facilities provides quick, convenient.
and reliable repair services for all of its computer products, 1n most instances
Warranty service will be performed 1n accordance with Radio Shack·s Limited
Warranty. Non-warranty service will be provided at reasonable parts and labor
costs.

Because of the sensitivity of computer equipment, and the problems which can
result from improper servicing, the following limitations also apply to the services
offered by Radio Shack

If any of the warranty seals on any Radio Shack computer products are broken.
Radio Shack reserves the right to refuse to service the equipment or to void any
remaining warranty on the equipment.

2. If any Radio Shack computer equipment has been modified so that It 1s not
wrthin manufacturer's specifications. including. but not limited to. the installation
of any non-Radio Shack parts. components. or replacement boards. then Radio
Shack reserves the right to refuse to service the equipment, void any remaining
warranty, remove and replace any non-Radio Shack part found 1n the equip­
ment, and perform whatever modifications are necessary to return the equip­
ment to ong1nal factory manufacturer's specifications.

3. The cost for the labor and parts required to return the Radio Shack computer
equipment to original manufacturer's specifications will be charged to the
customer in addition to the normal repair charge.

CONTENTS
INTRODUCTORY NOTE

Page

7

CHAPTER 1. HOW TO USE THIS MANUAL . 9

CHAPTER 2. INTRODUCTION TO THE PC-3 ... 11

Description of System . 11

Description of Keys . 12

Description of Display . 15

ALL RESET Button .. 17

Installing the Batteries .. 19

CHAPTER 3. USING THE PC-3 AS A CALCULATOR ... 23

Start Up ... 23

Shut Down . 23

Auto Off ... 24

Some Helpful Hints . 24

Simple Calculations . 25

Recalling Entries . 26

Errors ... 31

Serial Calculations . 32

Negative Numbers . 34

Compound Calculations and Parentheses . 36

Page

Using Variables in Calculations . 37

Chained Calculations . 39

CHAPTER 4. CONCEPTS AND TERMS OF BASIC ... 41

Numeric Constants . 41

Scientific Notation . 41

Limits .. 43

Hexadecimal Numbers . 43

String Constants . 44

Variables . 45

Simple Numeric Variables . 45

Simple String Variables . 45

Numeric Array Variables .. 46

String Array Variables .. 47

Preallocated Variables .. 47

Expressions . 49

Numeric Operators .. 49

String Expressions .. 50

Relational Expressions . 51

Logical Expressions . 52

Parentheses and Operator Precedence . 55

Calculator Mode .. 56
2

Functions

Page

56

CHAPTER 5. PROGRAMMING THE PC-3 .. 59

Programs . 59

BASIC Statements .. 59

Line Numbers . 59

BASIC Verbs . 60

BASIC Commands .. 60

Modes . 61

Beginning to Program on the PC-3 .. 61

Example 1 - Entering and Running a Program . 62

Example 2 - Editing a Program . 63

Example 3 - Using Variables in Programming .. 66

Example 4 - More Complex Programming . 69

Storing Programs in the PC-3's Memory . 70

CHAPTER 6. SHORTCUTS ... 73

The DEF Key and Labelled Programs .. 73

ReSerVe Mode ... 74

Templates .. 76

CHAPTER 7. USING THE PC-3 PRINTER/CASSETTE INTERFACE 77

Description of System . 77

Introduction of the Machine .. 77
3

Page

Power ... 79

Connecting the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface 81

Loading the Paper . 83

Using the Printer . 85

Using a Cassette Recorder . 87

Care and Maintenance . 90

Errors . 90

CHAPTER 8. BASIC REFERENCE ... 95

Commands . 96

Verbs ... 97

Functions .. 98

Pseudovariables .. 174

Numeric Functions .. 175

String Functions .. 183

CHAPTER 9. PROGRAMMING EXAMPLES ... 187

Loan Payments .. 187

Sort .. 189

Slot Machine Simulation .. 190

Federal Tax Estimator .. 193

Relationship of Two Variables .. 198

Minefield Game .. 201
4

Page

CHAPTER HJ. TROUBLESHOOTING .. 207

Machine Operation .. 207

BASIC Debugging ... 208

CHAPTER 11. MAINTENANCE OF THE PC-3 POCKET COMPUTER -211

APPENDICES

Appendix A: Error Messages .. -213

Appendix B: ASCII Character Code Chart .. 215

Appendix C: Formatting Output .. 218

Appendix D: Expression Evaluation and Operator Priority ... 223

Appendix E: Feature Comparison of the PC-1, PC-2, and PC-3 -226

Appendix F: Specifications ... 234

INDEX .. 237

PROGRAM EXAMPLES .. 241

5

INTRODUCTORY NOTE
Welcome to the world of Radio Shack owners!

Few industries in the world today can match the rapid growth and technological advances being made in the field of personal

computing. Computers which just a short time ago would have filled a huge room, required a Ph.D. to program, and cost thousands

of dollars, now fit in the palm of your hand, are easily programmed, and cost so little that they are within the reach of nearly

everyone.

Your new Radio Shack PC-3 was designed to bring you all of the latest state of the art features of this computing revolution. As

one of the most sophisticated hand-held computers in the world today, it incorporates many advanced capabilities:

* MEMORY SAFEGUARD - the PC-3 remembers stored programs and variables even when you turn it off.

* Battery-powered operation for true portability.

* AUTO POWER OFF function which conserves the batteries by turning the power off if no activity takes place within a

specified time limit.

* Programmable functions which allow the PC-3 to be used as a "smart"' calculator.

* An expanded version of BASIC which provides formatted output, two-dimensional arrays, variable length strings, program

chaining and many other advanced features.

* An optional Printer/Cassette Interface (Model PC-3) for long-term storage and hard-copy printout of programs and data.

Congratulations on entering an exciting and enjoyable new world. The Radio Shack PC-3 is a powerful tool, designed to meet your

specific mathematical, scientific, engineering, business and personal computing needs. With the Radio Shack PC-3 you can begin

NOW providing the solutions you'll need tomorrow!
7

CHAPTER 1 HOW TO USE THIS MANUAL
This manual is designed to introduce you to the capabilities and features of your PC-3 and to serve as a valuable reference tool.

Whether you are a "first time user" or an "old hand" with computers, you should acquaint yourself with the PC-3 by reading

and working through Chapters 2 through 6.

* Chapter 2 describes the physical features of the PC-3.

* Chapter 3 demonstrates the use of the PC-3 as a calculator.

* Chapter 4 defines some terms and concepts which are essential for BASIC programming, and tells you about the special

considerations of these concepts on the PC-3.

* Chapter 5 introduces you to BASIC programming on the PC-3, showing you how to enter, correct, and run programs.

* Chapter 6 discusses some shortcuts that make using your new computer easier and more enjoyable.

Experienced BASIC programmers may then read through Chapters 8 and 9 to learn the specific features of BASIC as implemented

on the PC-3. Since every dialect of BASIC is somewhat different, read through this material at least once before starting serious

programming.

Chapter 8 is a reference section covering all the verbs, commands, and functions of BASIC arranged in convenient alphabetical

groupings.

Chapter 9 provides examples of useful and interesting programs that illustrate some of the techniques of using BASIC on the

PC-3.

9

If you have never programmed in BASIC before, we suggest that you buy a separate book on beginning BASIC programming,

or attend a BASIC class, before trying to work through these chapters. This manual is not intended to teach you how to program.

The remainder of the manual consists of:

* Chapter 7 - Basic information on the optional PC-3 Printer/Cassette Interface.

* Chapter 10 - A troubleshooting guide to help you solve some operating and programming problems.

* Chapter 11 - The care and maintenance of your new computer.

Detailed Appendices, at the end of the manual, provide you with useful charts, comparisions, and special discussions concerning

the use and operation of the PC-3.

10

CHAPTER 2 INTRODUCTION TO THE PC-3
The Radio Shack PC-3 Pocket Computer

system consists of:

TRS-BO

* 52-character keyboard.
l■·ttttt,tmil 4111- AUTO-OFF/PERMANENT MEMORY

* 24-character display.

* Powerful BASIC in 24K ROM.

* 8-bit CMOS processor.

* 2.2KB RAM.

* Optional PC-3 Printer/Cassette

Interface.

I I
I I DEL INS ON

mII GE[I (I] OJ G [:J mB] g
! II :t:I: $ ¾ & ? : •;

Ill @J El [[) lfil m @ 0 CIJ @l 0

0 @ [§) lI1 (21 G1 0 IEJ ~ 0 1111
SPC P-NP 7[

m 0 [§) rn m GJ s □ 1 ENTER 1 B

Figure 1. PC-3 (Front View)

1]

g R
Ill n

1,

Ill IIJ)
v Exp

Ill a

::,I
PRO

~
Off -

CA --< a
>

Ill)

To familiarize you with the placement and functions of parts of the PC-3 keyboard, we will now study each section of the

keyboard. For now, just locate the keys and read the description of each. In Chapter 3, we will begin using your new machine.

11

I I DEL INS ON

OJ OJ G CEl [EEi
! II iJ: $ % & ? : • ;

'21Ellfil000m:J[I]~0

0 ffi ([I 0 @l GJ 0 IEJ [I] El
SPC P++ NP

0 0 @J G @ Gl BJ D ENTER I
Figure 2.

W ~ W Alphabet keys. You are probably familiar with these keys from the standard typewriter keyboard. On the PC-3
display, the characters always appear in upper case.

(=) Equals key. On the PC-3 this key is not used to indicate the end of a calculation; in BASIC programming, this symbol

has a special function.
SPC

CJ
P-NP

SPaCe key. Pressing this key advances the cursor, leaving a blank space. Pressing @ while the cursor is positioned

over a character erases that character.

(ENTER) (ENTER) key. When you press this key, whatever you previously typed is "entered' into the computer's memory. This

12

key is similar to the Carriage Return key on a typewriter. You must press (ENTER) before the PC-3 will act on alpha­

numeric input from the keyboard. Pressing (SHIFT) before pressing this key will cause the PC-3 Pocket Computer

to switch on and off the printing of calculations on the PC-3 printer.

(DEF) @El key. This is a special key used to execute BASIC programs.

(SHIFT) (SHIFT) key. Press this key before pressing any key which has a character above it and the character atove is displayed.

(Note: Not used to capitalize letters as all alphabet keys on the PC-3 are in upper case).
l

CD
l

CD
DEL

~

INS

CB

ON

(BRK)

$ % &
?

Down Arrow key. Press this key to display the next program line. Pressing (SHIFT) before pressing this key produces

a left parenthesis.

Up Arrow key. Press this key to display the previous program line. Pressing (SHIFT) before pressing this key produces

a right parenthesis.

Backspace key. This key allows you to move the cursor to the left without erasing previously typed characters. Pressing

(SHIFT) before pressing this key will OELete whatever character the cursor is "on top of".

Forward key. This key allows you to move the cursor to the right without erasing previously typed characters. Pressing

(SHIFT) before pressing this key makes a space directly before the character the cursor is "on top of". You can then

INSert new characters into this space.

BREAK key. The ~ key temporarily interrupts a program which is being executed. Pressing this key after an AUTO

OFF turns the computer back on.

These symbols are found above the top row of alphabet keys. Pressing (SHIFT) and then the alphabet key under
the character desired displays these symbols.

13

ON
RSV
PRO
RUN

CA
(CL)

CA --A

ID -{ji) < • a
7[v Exp >

El - Figure 3.

Use this power slide switch to turn the PC-3 ON and OFF. Notice that the machine is ON when this switch is positioned

in any one of three modes: RUN, PROgram, and ReSerVe.

Number keys. The layout of these keys is similar to that found on the standard calculator.

Clear key. Pressing Clear erases the characters you have just typed ir. and "releases" errors. Pressing (SHIFT) before

pressing this key activates the CA (reset) function. CA clears the display and resets the computer.

14

< rn
>

G
IEXP

CB

Division key. Press this key to include the division operator in calculations. Pressing (SHIFT) and then this key will

display the "power" symbol, indicating that a number is to be raised to a specific power.

Multiplication key. Press this key to include the multiplication operator in calculations. Pressing (SHIFT) and then

this key displays the "less than" character.

Subtraction key. Press this key to include the subtraction operator in calculations. Pressing (SHIFT) and then this key

displays the "greater than" character.

Addition key. Press this key to include the addition operator in calculations. Pressing (SHIFT) and then this key

displays the exponentiation character used in scientific notation.

1T v@ These three characters are found above the zero, decimal point and 3 keys. They are displayed by pressing (SHIFT)

and then the character under the symbol desired.

BUSY P DEF DEGRAD SHIFT E ..
: :■■■

.:. :
. . . .: ·····

: ... : :■ ::::: ! :.■·; : : .. .:
....
J::i :::::]. ::::~ !:::! !:::! :-5•: 5 ... 5 Figure 4. Sample PC-3 Display

The liquid crystal display of the Radio Shack PC-3 shows up to 24 characters at one time. Although you may input up 80 char­

acters (including (ENTER)) in one line, only the first 24 characters are displayed. To review the remaining characters in a line,

move the cursor to the far right and the display will 'scroll' - that is, as characters drop off the left, new characters appear on the

right.

The display consists of:

The prompt. This symbol appears when the computer is awaiting input. As you press, the prompt disappears and is

replaced by the cursor.

15

BUSY

The cursor. This symbol (the underline) tells you the location of the next character to be typed in. As you begin

typing, the cursor replaces the prompt. The cursor is also used to position the computer over certain characters when

using the INSert and DELete functions.

Program Execution Indicator. When the PC-3 is executing a program, this indicator is lit (except when characters are

displayed). The PC-3 will not undergo AUTO OFF while the BUSY indicator is on. BUSY disappears from the display

when execution is completed.

P Printer Indicator. This indicator appears whenever you elect the print option when using the PC-3 as a calculator.

DEF Definable Mode Indicator. This symbol lights up whenever you press the DEF key.

DEGRAD Angular Measurement Indicator. This indicator displays the current unit of angles for the input of trigonometric

(
DEG)
RAD
GRAD

SHIFT

E

functions. Depending on the mode in use, the display will read DEG (degrees), RAD (radians), or GRAD (gradients).

Shift Key Indicator. This indicator lights up when the (SHIFT) key has been depressed. Remember, the (SHIFT) key

must be released before depressing any other key.

Error Indicator. Whenever an error is encountered, this indicator is displayed.

16

RESET button

I
Figure 5. PC-2 (Rear Panel)

ALL RESET: Reset button. This button is used to reset the computer when Clear or CA is not sufficient to correct the problem.

NOTE
To reset the PC-3, hold down any key on the keyboard and simultaneously press the RESET button on the back.

This preserves all programs, variables, and reserve memory.
Hold down
any key

Figure 6.

Press the A LL RESET button with any pointed object
such as a ball-point pen. Do not use easily broken
points such as mechanical pencils or the tips of needles.

" ~ --------------- PC-3 Pocket Computer

17

If you get no response from any key, even when the above operation is performed, push the RESET button without any key.

With this operation, the program, data and all reserved contents are cleared, so do not press the RESET button without any key

unless the above trouble occurs.

RESET button

Figure 7.

PC-3---

Contrast Contro I

Figure 8.

18

Turn the control in the direction of the arrow for a brighter
display, and turn it in the opposite direction for a dimmer
display.
Adjust it so that the display is easy to see.

BATTERY REPLACEMENT FOR THE PC-3

The PC-3 Pocket Computer operates on the lithium battery alone. When connected to the PC-3 Printer/Cassette Interface, the

PC-3 can also be supplied from the PC-3 Printer/Cassette Interface if it has enough power voltage and the lithium battery power

decrease. This minimizes the power consumption of the lithium battery.

When replacing the batteries, these precautionary instructions will eliminate many problems:

• Always replace both of the batteries at the same time.

• Do not mix a new battery with a used battery.

• Use only: Lithium battery (type CR-2032) x 2

INSTALLING THE BATTERIES

The display is dim and difficult to see when viewed from the front, even after turning the contrast control on the right of the

computer counterclockwise as far as it goes. This indicates that the battery power is depleted. In this case, replace the battery

promptly. (Using the optional PC-3 Printer/Cassette Interface peripheral equipment, record programs and data on tape in advance.)

19

(1) Turn off the computer by setting the power

slide switch to the OFF position.

(2) Remove the screws from the back cover with a

small screwdriver. (Fig. 9)

(3) Remove the battery cover by silding it in the

direction of the arrow shown in figure 10.

20

Figure 9

Figure 10

Screw

0 -ttt------+------ Battery cover
= = =

D 0

(4) Replace the two batteries observing the correct

polarity. (Fig. 11)

(5) Replace the battery cover by sliding it in the

reverse direction of the arrow shown in figure 2.

(6) Hook the claws of the back cover into the slits

of the computer proper. (Fig. 12)

Figure 11

Figure 12

21

_J

p
I O I

I 10L! J

(7) Push the back cover in slightly while replacing the screws.

(8) Turn on the computer by setting the power slide switch to the ON position and press the RESET button to clear the computer.

Then check the following display.

·· . .. •·
L_ Prompt symbol

DEG

Figure 13. Sample Display On Start-Up

If the display is blank or displays any symbol other than the prompt " ,.:- ", remove the batteries and install them again.

Then check the display again.

NOTE:

Keeping a dead battery may result in damage to the computer due to solvent leakage of the battery. Remove a dead battery

promptly.

CAUTION: Keep battery out of reach of children.

22

-
CHAPTER 3 USING THE PC-3 AS A CALCULATOR
Now that you are familiar with the layout and components of the Radio Shack PC-3, we will begin investigating the exciting

capabilities of your new computer.

Because the PC-3 allows you the full range of calculating functions, plus the increased power of BASIC programming abilities

(useful in more complex calculation). it is commonly referred to as a "smart" calculator. That, of course, makes you a "smart"

user!

(Before using the PC-3, be sure that the batteries are correctly installed.)

Start Up

To turn ON the PC-3, slide the power switch up and select one of three modes: RUN, PRO, or RSV. For use as a calculator, the

PC-3 must be in the RUN mode. When the machine is ON, the prompt(>) will appear on the display.

Shut Down

To turn OFF the PC-3, slide the power switch to the OFF position.

When you turn OFF the machine, you clear (erase) the display. However, the PC-3 does remember all programs, reserve keys, and

mode settings which were in use when the computer was turned OFF. All of these settings are still in effect when the machine is

turned back ON.

When the BEEP instruction or CLOAD command is executed, stop the execution by pressing the ~ key and slide the power

switch to the OFF position.

23

Auto Off

In order to prevent needless battery wear, the PC-3 automatically powers down when no keys have been pressed for about 11

minutes. (Note: The PC-3 will not AUTO OFF while you are executing a program.)
ON

To restart the computer after an AUTO OFF, press the ~ key. All settings will be exactly as they were when the AUTO OFF

occurred.

Some Helpful Hints

Until you are used to your new machine, you are bound to make mistakes while entering data. Later we will discuss some simple

ways to correct these mistakes. For now, if you get an Error Message, press Clear and retype the entry. If the computer "hangs

up" - you cannot get it to respond at all - press the ALL RESET button (See Chapter 2).

The PROMPT (>) tells you that the PC-3 is awaiting input. As you enter data the prompt disappears and the CURSOR (-) moves

to the right, indicating the next available location in the display.

The right~ and left 8) arrows move the cursor within a line.

(ENTER) informs the PC-3 that you are finished entering data and signals the computer to perform the indicated operations.
YOU MUST PRESS(ENTER) AT THE END OF EACH LINE OF INPUT OR YOUR CALCULATIONS WILL NOT BE ACTED
UPON BY THE COMPUTER.

When performing numeric calculations, input appears on the left of the screen, the results appear on the right of the display.

When using the (SHIFT) key in conjunction with another key (to access square root, for example), press (SHIFT) , release the

(SHIFT) key, then press the other key. (SHIFT) is active for only one key at a time.

24

Do not use dollar signs or commas when entering calculations into the PC-3. These characters have special meanings in the BASIC

programming language.

In this manual we use the (I) to indicate zero, so that you can distinguish between the number ((I)) and the letter (0).

To help get you started entering data correctly, we will show each keystroke necessary to type in the example calculations. When

(SHIFT) is used, we will represent the desired character in the following keystroke. For example, pressing (SHIFT) and CD will

produce the (character. These keystrokes are written (SHIFT) CJ:] .

Be sure to enter Clear after each calculation (unless you are performing serial calculations). Clear erases the display and resets

the error condition. It does not erase anything stored in the computer's memory.

Simple Calculations

The PC-3 performs calculations with ten-digit precision. If you have not already done so, turn ON your computer by setting it

in the RUN mode. Now try these simple arithmetic examples. Remember to Clear between calculations.

Input Display

100.

50.

600.

60.
25

100.

6. 283185307

8.

Recalling Entries

Even after the PC-3 has displayed the results of your calculaiton, you can redisplay your last entry. To recall, use the left~ and

right CE) arrows.

The left arrow~ recalls the last entry with the cursor positioned over the last character.

The right arrow CE) recalls the entry with the cursor positioned "on top of" the first character.

Remember that the left and right arrows are also used to position the cursor along a line. The right and left arrows are very helpful

in editing (or modifying) entries.

You will become familiar with the use of the right and left arrows in the following examples. Now, take the role of the manager

and perform the calculations as we discuss them.

As the head of personnel in a large marketing division, you are responsible for planning the annual sales meeting. You expect

300 people to attend the three day conference. For part of this time, the sales force will meet in small groups. You believe that

26

groups of six would be a good size. How many groups would this be?

50.

On second throught you decide that groups containing an odd number of participants might be more effective. Recall your last

entry using the ~ .

300/6-

To calculate the new number of groups you must replace the six with an odd number. Five seems to make more sense than seven.

Because you recalled the last entry by using the ~ , the cursor is positioned at the end of the display. Use the ~ to move

the cursor one space to the left.

Notice that after you move the cursor it becomes a flashing block

character, it will be displayed as the flashing cursor.

27

30011

Whenever you position the cursor "on top of" an existing

Type in a 5 to replace the 6. One caution in replacing characters - one you type a new character over an existing character, the

original is gone forever! You cannot recall an expression that has been typed over.

Input

300/5_

60.

Sixty seems like a reasonable number of groups, so you decide that each small group will consist of five participants.

Recall is also useful to verify your last entry, especially when you results do not seem to make sense. For instance, suppose you

had performed this calculation:

6.

Even a tired, overworked manager like you realizes that 6 does not seem to be a reasonable result when you are dealing with hund­

reds of people! Recall your entry using the ~

28

Because you recalled using the CB , the flashing cursor is now positioned over the first character in the display. To correct this

entry, you need to insert another zero. Using the CB , move the cursor until it is positioned over the zero. When making an

INSert, position the flashing cursor over the character before which you wish to make the insertion.

Input Display

Use the I NSert key no make space for the needed character.

Display

Pressing INSert moves all the characters one space to the right, and inserts a bracketed open slot. The flashing cursor is now posi­

tioned over this open space, indicating the location of the next typed input. Type in your zero. Once the entry is corrected,

display your new result.

Input Display

60.

29

On the other hand, suppose that you had entered this calculation:

Input Display

600.

The results seem much too large. If you only have 300 people attending the meeting, how could you have 600 "small groups"?

Recall your entry using the (8 .

Input Display

J000/5

The flashing cursor is now positioned over the first character in the display. To correct this entry, eliminate one of the zeros.

Use the (8 to move the cursor to the first zero (or any zero). When deleting a character, position the cursor "on top of" the

character to be deleted.

Input Display

Now the DELete key to get rid of one of the zeros.

30

Input Display

31]0/ 5

Pressing DELete causes all the characters to shift one space to the left. It deletes the character that the cursor is "on top of" and

the space the character occupies. The flashing cursor stays in the same position indicating the next location for input. Since you

have no other changes to make, complete the calculation.

Input Display

60.

(Note: Pressing the SPaCe key, when it is positioned over a character, replaces the character leaving a blank space. DE Lete

eliminates the character and the space it occupies.)

Errors

Recalling your last entry is essential when you get the dreaded ERROR message. Let us image that, unintentionally, you typed

th is entry into the PC-3:

Input

ERROR 1

31

Naturally you are supprised when this message appears! ERROR 1 is simply the computer's way of saying. "I don't know what

you want me to do here". To find out what the problem is, recall your entry using either the B) or ~ .

Input Display

Whether you use the B) or ~ key, the flashing cursor indicates the point at which the computer got confused. And no

wonder, you have too many operators! To correct this error, use the DELete key.

Input Display

60.

If, upon recalling your entry after an ERROR 1, you find that you have omitted a character, use the INSert sequence to correct it.

When using the PC-3 as a calculator, the majority of the errors you encounter will be ERROR 1 (an error in syntax). For a com­

plete listing of error messages, see APPENDIX A.

Serial Calculations

The PC-3 allows you to use the results of one calculation as part of the following calculation.

You are planning a special conference and are expecting 300 people to attend. Part of your responsibility in planning this confe­

rence is to draw up a detailed budget for approval. You know that your total budget is $150.00 for each attendant. Figure your

total budget:
32

-
Input Display

45000. 1

Of this amount you plan to use 15% for the final night's awards presentation. (When performing serial calculations, it is not ne­

cessary to retype your previous results, but DO NOT Clear between entries.) What is the awards budget?

Input Display

45000. *· 15_

Notice that, as you type in the second calculation (* · 15), the computer automatically displays the result of your first calculation

at the left of the screen and includes it in the new calculation. In serial calculations, the entry must begin with an operator. As

always, you end the entry with (ENTER) .

NOTE: The 00 key can not be used in the calculation. The (ID key should be used as a character only.

Example: 45000 W 15 (SHIFT) 00 ➔ ERROR 1

Input Display

6750. 1

Continue allocating your budget. The hotel will cater your dinner for $4000:

33

Input Display

6750. -4000-

2750.

Decorations will be $1225:

Input Display

1525.

Finally, you must allocate $2200 for the speaker and entertainment:

Input Display

-675.

Obviously, you will have to change either your plans or your allocation of resources!

Negative Numbers

Since you want the awards dinner to be really special, you decide to stay with the planned agenda and spend the additional money.

34

However, you wonder what percentage of the total budget will be used up by this item. First, change the sign of the remaining

sum:

Input Display

-675. *-1 _

675.

Now add th is result to your original presentation budget:

Input

7425. 1

Dividing by 45000 glves you the percentage of the total budget this new figure represents:

Input

0. 165 1

Fine, you decide to allocate 16.5% to the awards presentation.

35

Compound Calculations and Parentheses

In performing the above calculations, you could have combined several of these operations into one step. For instance, you might

have typed both these operations on one line:

675+6750/45000

Compound calculations, however, must be entered very carefully:

675+6750/45000 might be interpreted as

675 + 6750

45000
or 675 + 6750

45000

When performing compound calculations, the PC-3 has specific rules of expression evaluation and operator priority (see APPEN­

DIX D). Be sure you get the calculation you want by using parentheses to clarify your entries:

(675+6750)/45000 or 675 + (6750 / 45000)

To illustrate the difference that the placement of parentheses can make, try these two examples:

Input

(SHIFT) CDW CD CTI CB w CD CTI CID
(SHIFT) CI)(Z) CD CTI CID CID CID (ENTER)

Display

36

0. 165

- - - -
(]J CTJ w CB (SHIFT) CD (]J CTJ CK) (QJ

CD GJ w CD (QJ (QJ (SHIFT) OJ (ENTER)

Using Variable in Calculations

675. 15

The PC-3 can store up to 26 simple numeric variables under the alphabetic characters A to Z. If you are unfamiliar with the con­

cept of variables, they are more fully explained in Chapter 4. You designate variables with an Assignement Statement.

A 5

B -2

You can also assign the value of one variable (right) to another variable (left):

C A+ 3

D E

A variable may be used in place of a number in any calculation.

Now that you have planned your awards dinner, you need to complete arrangements for your conference. You wish to allocate

the rest of your budget by percentages also. First you must find out how much money is still available. Assign a variable (R)

to be the amount left from the total:

Input Display

R = 45000-7425_

37

37575.

As you press (ENTER) the PC-3 performs the calculation and displays the new value of R. You can display the current value of

any variable by entering the alphabetic character it is stored under:

Input Display

37575.

You can then perform calculations using your variable. The value of (R) will not change until you assign it a new value.

You wish to allocate 60% of the remaining money to room rental:

Input Display

22545.

Similarly, you want to allocate 25% of your remaining budget to conduct management training seminars:

38

Input Display

9393. 75 I

Variables will retain their assigned values even if the machine is turned OFF or undergoes an AUTO OFF. Variables are lost only

when:

* You assign a new value to the same variable.

* You type in CLEAR (ENTER) (not the Clear key).

* You clear the machine using the ALL RESET button.

* The batteries are changed.

There are certain limitations on the assignment of variables, and certain programming procedures which cause them to be changed.

See Chapter 4 for a discussion of assignment. See Chapter 5 for a discussion of the use of variables in programming.

Chained Calculations

In addition to combining several operators in one calculation, the PC-3 also allows you to perform several calculations one after

the other - without having to press (ENTER) before moving on. You must separate the equations with commas. Only the result

of the final calculation is displayed. (Remember, too, that the maximum line length accepted by the computer is 80 characters,

including (ENTER) .)

You wonder how much money would have been available for rooms if you had kept to your original allocation of 15% for the

awards dinner:

39

Input

CID 2 GJ w w ~CDW CID CID
CID (SHIFT) Q CID ~ 8 C§J CID

Display

R=. 85*45000, R*.60_

Although the computer performs all the calculations in the chain, it displays only the final result.

Input Display

To find the value of$ used in this calculation, enter R.

Input Display

Now It's Your Turn

22950. 1

38250. 1

The concludes our discussion of using the PC-3 as a calculator. Undoubtedly, as you become more familiar with your machine's

capabilities and special features, you will find many new and useful applications for this "smart" calculator.

But calculating is only one of the many potential uses of the PC-3. In the next chapter we will examine the concepts and terms

of the BASIC language, as it is used by the PC-3. Then you can begin to create your own, unique, problem-solving programs.

40

CHAPTER 4 CONCEPTS AND TERMS OF BASIC
In this chapter we will examine some concepts and terms of the BASIC language. Because the PC-3 uses many features of BASIC

when used as a calculator, some of these concepts are also useful for advanced calculator functions.

Numeric Constants

In Chapter 3 you entered simple numbers for use in calculations, without worrying about the different ways that numbers can be

represented, or the range of numbers that the Radio Shack PC-3 can process. Some of you, however, may need to desire to know

more about how th is computer uses numbers.

The Radio Shack PC-3 recognizes three different ways to represent numbers:

* Decimals.

* Exponential or scientific notation.

* Hexadecimal numbers.

Decimal numbers are familiar to most of you. Scientific notation and hexadecimal numbers may require some explanation.

Scientific Notation

People who need to deal with very large and very small numbers often use a special format called exponential or scientific notation.

In scientific notation, a number is broken down into two parts.

The first part consists of a regular decimal number between 1 and 10. The second part represents how large or small the number

is in powers of 10.

As you know, the first number to the left of the decimal point in a regular decimal number shows the number of 1 's, the second
41

shows the number of 10's, the third the number of 10's, and the fourth the number of 1000's. These are simply increasing powers

of 10.

10°= 1, 101 = 10, 102 = 100, 103 = 1000, etc.

Scientific notation breaks down a decimal number into two parts: one shows what the numbers are; the second shows how far a

number is to the left or right of the decimal point. For example:

1234 becomes 1.234 times 103 (3 places to the right)

654321 becomes 6.54321 times 105 (5 places to the right)

.000125 becomes 1.25 times 10-4 (4 places to the left)

Scientific notation is useful for many shortcuts. You can see that it would take a lot of writing to show 1.0 times 1087
- a 1 and

87 zeros! But, in scientific notation this number looks like this:

1.0 X 1087 or 1.0 IE 87

The PC-3 uses scientific notation whenever numbers become too large to display using decimal notation. This computer uses a

special exponentiation symbol, the IE, to mean "times ten to the":

1234567890000 is displayed as 1.23456789 IE 12

.000000000001 is displayed as 1. IE -12

Those of you who are unfamiliar with this type of notation should take some time to put in a few very large and very small

numbers to note how they are displayed.

42

Limits

The largest number which the PC-3 can handle is ten significant digits, with two-digit exponents. In other words, the largest

number is:

9.999999999 IE 99

and the smallest number is:

9999999999000
000000000000000000000

9.999999999 IE -99 = .00
000000000000000000009999999999

Under certain circumstances, when numbers will be used frequently, the PC-3 uses a special compact form. In these cases there are

special limits imposed on the size of numbers, usually either 0 to 65535 or -32768 to +32767. Those with some computer back­

ground will recognize both these numbers as the largest range which can be represented in 16 binary bits. The circumstances

under which this form is used are noted in Chapter 8.

Hexadecimal Numbers

The decimal system is only one of many different systems to represent numbers. Another which has become quite important when

using computers is the hexadecimal system. The hexadecimal system is based on 16 instead of 10. To write hexadecimal numbers,

you use the familiar 0 ~ 9 and 6 more "digits": A, B, C, D, E, and F. These correspond to 10, 11, 12, 13, 14, and 15. When

43

you want the PC-3 to treat a number as hexadecimal, put an ampersand (&) character in front of the numeral:

&A 10

&10 16

& 100 256

& FFFF = 65535

Those with some computer background may notice that the last number (65535) is the same as the largest number in the special

group of limits discussed in the last paragraph. Hexadecimal notation is never required in using the PC-3, but there are special

applications where it is convenient.

String Constants
In addition to numbers, there are many ways that the Radio Shack PC-3 uses letters and special symbols. These letters, numbers,

and special symbols are called characters. These characters are available on the PC-3.

1 2 3 4 5 6 7 8 9 0
ABCDEFGHI JKLMNOPORSTUVWXYZ

! " # $ % & () * + , / : ; < = > ? @y rr"' IE

In BASIC, a collection of characters is called a string. In order for the PC-3 to tell the difference between a string and other parts

of a program, such as verbs or variable names, you must enclose the characters of the string in quotation marks(").

The following are examples of string constants:

44

"HELLO"

"GOODBYE"

"RADIO SHACK PC-3"

The following are not valid string constants:

"COMPUTER No ending quote

"ISN"T" Quote can't be used within a string

Variables

In addition to constants, whose values do not change during a program, BASIC has variables, whose values can change. Variables

are names used to designate locations where information is stored. These variables are like the letters used in algebraic equations.

Just as there are numeric and string constants, there are numeric and string variables.

Simple Numeric Variables

You have already used simple numeric variables when working with the PC-3 as a calculator in Chapter 3. Simple numeric variables

are used to store a single number and are designated by a single letter (A-Z):

A 5
C 12.345

Simple numeric variables may take the same range of values as numeric constants.

Simple String Variables

String variables are used to hold strings (a collection of characters). They are named by a single letter followed by a dollar sign:
45

A$
C$

A string variable may be from 0 to 7 characters long. If you try to store more than 7 characters in a string variable, only the

first 7 will be saved. When a string variable is empty, or its length is zero, it is called NUL or the NUL string.

Numeric Array Variables

For some purposes it is useful to deal with numbers as an organized group, such as a list of scores or a tax table. In BASIC these

groups are called arrays. An array can be either one-dimensional, like a list, or two-dimensional, like a table. Array names are

designated in the same manner as simple variable names, except that they are followed by parentheses. The elements of an array

are referred to by a number inside the parentheses; when the array is two-dimensional, there must be two numbers separated by

a comma.

A(5) The fifth element of a one-dimensional array A.

B (3,2) The element in the third row and second column of a two dimensional B array.

Arrays are created using the DIM verb or command. To create an array, give its name and its size.

DIMX(5)

DIM Y(32)

Note that DIM X(5} actually creates an array with six entries:

X(0} X(1} X(2) X(3) X(4) X(5).

Similarly DIM Y(2, 2) creates an extra 0 row and an extra 0 column:

46

Y(0,0)
Y(1, 0)

Y(2,0)

Y(0, 1)
Y (1, 1)

Y(2, 1)

Y(0, 2)
Y(1, 2)

Y(2,2)

This extra element, or row and column, is often used by programmers to hold partial products during computations. For example,

you might total the elements of the X array by summing them into X(0).

The form and use of the DIM verb is covered in detail in Chapter 8.

Note: The A array does not have the extra 0 element and does not need to be DIMensioned (see section below on Preallocated

Variables).

String Array Variables

String array variables have the same relationship to numeric array variables as simple string variables have to simple numeric vari­

ables -- their names are the same except for the addition of a dollar sign:

C$(5) The fifth string element in the array C$

With string arrays, the length of each string will be 16 characters unless you specifically choose a different length in the DIM

statement.

DIM X$(12) *8 DIMensions a string array with 12 elements, each a string 8 characters long.

Chapter 8 details the use of the DIM statement.

Preallocated Variables

Some of the variables which you will use most frequently have already been allocated space in the PC-3's memory. Twenty-six

47

locations are reserved for numeric variables A - Z, string variables A$ - Z$, numeric array A(26),

or string array A$(26). The locations are assigned as follows:

Loe. Num. Var. Str. Var. Num. Arr. Var. Str. Arr. Var.

A A$ A(1) A$(1)

2 B B$ A(2) A$(2)

3 C C$ A(3) A$(3)

4 D D$ A(4) A$(4)

23 w W$ A(23) A$(23)

24 X X$ A(24) A$(24)

25 y Y$ A(25) A$(25)

26 z Z$ A(26) A$(26)

NOTE: There are only twenty-six locations and you must be careful not to use the same location in two different ways.

If you use location 24 to store a numeric value in X and then try to print X$, you will get an Error 9. Similarly, if you store a

number in A(24) and then store another number in X, you will over-write the first number, but you will not get an error message.

The A() and A$() arrays are different from all other arrays -- they don't have a zero element. It is possible to use DIM to

make A() or A$() larger than 26 but, if you do, the first 26 elements will use the reserved locations while the elements from

26 on will be stored in a different part of the memory. The only way that you will notice this, however, is that these 26 special

locations are not cleared when you RUN a program. All other array variables are cleared with each new RUN. By using good

48

programming practice and always initializing your variables to the desired value, you will avoid any possible confusion.

If DIM is used to allocate the A() or A$() arrays larger than 26 elements, there are certain special conditions in which an error

can cause the part of the array from A(27) or A$(27) on to become inaccessible. If this occurs, it is necessary to redimension the

array.

Expressions

An expression is some combination of variables, constants, and operators which can be evaluated to a single value. The calculations

which you entered in Chapter 3 were examples of expressions. Expressions are an intrinsic part of BASIC programs. For example,

an expression might be a formula that computes an answer to some equation, a test to determine the relationship between two

quantities, or a means to format a set of strings.

Numeric Operators

The PC-3 has five numeric operators. These are the arithmetic operators which you used when exploring the use of the PC-3
as a calculator in Chapter 3:

+ Addition

Subtraction

* Multiplication

I Division

/\ Power

A numeric expression is constructed in the same way that you entered compound calculator operations. Numeric expressions

can contain any meaningful combination of numeric constants, numeric variables, and these numeric operators:

49

(A* B)"' 2

A (2, 3) + A (3, 4) + 5.0 - C

(A/8) * (C + D)

In certain circumstances the multiplication operator can be implied:

2A is the same as 2 * A

7C is the same as 7 * C

ABC is the same as A* B * C

As you can see from the last example, there is a possibility that implied multiplication could be confused with other BASIC words,

so don't use this form unless the context is very clear.

NOTE: Negative numbers may not be raised to a power with the "'operator since you may obtain incorrect signs. If negative

numbers are encountered in a program, convert the numbers to positive numbers using ABS before using the A operator.

You will then have to change the result to the appropriate sign.

String Expressions

String expressions are similar to numeric expressions except that there is only one string operator -- concatenation (+). This is

the same symbol used for plus. When use with a pair of strings, the + attaches the second string to the end of the first string and

makes one longer string. You should take care in making more complex string concatenations and other string operations because

the work space used by the PC-3 for string calculations is limited to only 79 characters.

NOTE: String quantities and numeric quantities cannot be combined in the same expression unless one uses one of the functions

which convert a string value into a numeric value or vice versa.

50

"15" + 10
"15" + "10"

Relational Expressions

is illegal

is "1510", not "25"

A relational expression compares two expressions and determines whether the stated relationship is True or False. The relational

operators are:

> Greater Than

> = Greater Than or Equal To

Equals

< > Not Equal To

< = Less Than or Equal To

< Less Than

The following are valid relational expressions:

A<B
C(1,2)>=5

D(3) <>8

If A was equal to 10, B equal to 12, C(1, 2) equal to 6, and D(3) equal to 9, all of these relational expressions would be True.

Character strings can also be compared in relational expressions. The two strings are compared character by character according

to their ASCII value, starting at the first character (see Appendix B for ASCII values). If one string is shorter than the other,

a 0 or NUL will be used for any missing positions. All of the following relational expressions are True:

51

II ABCDEF 11 = II ABCDEF 11

11ABCDEF" < > 11ABCDE"
11ABCDEF" > 11ABCDE"

Relational expressions are either True or False. The PC-3 represents True by a 1; False is represented by a (il. In any logical test,
an expression which evaluates to 1 or more will be regarded as True, while one which evaluates to (il or less will be considered False.

Good programming practice, however, dictates the use of an explicit relational expression instead of relying on this coincidence.

Logical Expressions

Logical expressions are relational expressions which use the operators AND, OR, and NOT. AND and OR are used to connect two

relational expressions; the value of the combined expression is shown in the following tables:

A AND B

Value
of
B

A OR B

Value
of
B

Value of A

True False

True True False

False False False

Value of A

True False

True True True

False True False

(Cf. Values of A and B must be (il or 1)
52

• Decimal numbers can be expressed in the binary notation of 16 bits as follows:

DECIMAL BINARY NOTATION
NOTATION OF 16 BITS

32767 0111111111111111

3 0000000000000011

2 0000000000000010

0000000000000001

0 0000000000000000

-1 1111111111111111

-2 1111111111111110

-3 1111111111111101

-32768 1000000000000000

The negative (NOT) of a binary number 0000000000000001 is taken as follows:

NOT 0000000000000001

(Negative) ➔ 1111111111111110

53

Thus, 1 is inverted to 0, and Oto 1 for each bit, which is "to take negative (NOT)."

Then the following will result when 1 and NOT 1 are added together:

0000000000000001 (1)

+) 1111111111111110 (NOT1)

1111111111111111 (-1)

Thus, all bits become 1. According to the above number list, the bits become -1 in deciml notation; that is, 1 + NOT 1 == -1.

The relationship between numerical value X and its negative

(NOT X) is:

X + NOT X == -1

This results in an equation of NOT X == -X-1

i.e.NOT X==-(X+1)

From this equation, the following results are found

NOT0==-1
NOT-1==0
NOT -2 == 1

More than two relational expressions can be combined with these operators. You should take care to use parentheses to make the

intended comparison clear.

(A<9) AND (8>5)
(A>= 10) AND NOT (A> 20)
(C == 5) OR (C == 6) OR (C = 7)

54

The PC-3 implements logical operators as "bitwise" logical functions on 16-bit quantities. (See note on relational expressions and

True and False.) In normal operations this is not significant because the simple 1 and 0 (True and False), which result from a

relational expression, use only a single bit. If you apply a logical operator to a value other than 0 or 1, it works on each bit in­

dependently. For example, if A is 17 and Bis 22, (A or B) is 23:

17 in binary notation is 10001

22 in binary notation is 10110

17 OR 22 is 10111 (1 if 1 in either number, otherwise 0)

10111 is 23 in decimal.

If you are a proficient programmer, there are certain applications where this type of operation can be very useful. Beginning pro­

grammers should stick to clear, simple True or False relational expressions.

Parentheses and Operator Precedence

When evaluation complex expressions the PC-3 follows a predefined set of priorities which determine the sequence in which opera­

tors are evaluated. This can be quite significant.

5 + 2 * 3 could be:

5+2

7*3
7

21

or 6

11

The exact rules of "operator precedence" are given in Appendix D.

To avoid having to remember all these rules and to make your program clearer, always use parentheses to determine the sequence

of evaluation. The above example is clarified by writing either:
55

(5 + 2) * 3 or 5 + (2 * 3)

Calculator Mode

In general, any of the above expressions can be used in the calculator mode, as well as in programming a BASIC statement. In the

RUN mode, an expression is computed and displayed immediately. For example:

(5>3) AND (2<6) 1 .

The 1 means that the expression is True.

Functions

Functions are special components of the BASIC language which take one value and transform it into another value. Functions

act like variables whose value is determined by the value of other variables or expressions. ABS is a function which produces the

absolute value of its argument.

ABS (-5)
ABS (6)

is

is

5

6

LOG is a function which computes the log to the base 10 of its argument.

LOG (100)
LOG (1000)

is

is

2

3

56

A function can be used any place that a variable can be used. Many functions do not require the use of parentheses.

LOG 100 is the same as LOG (100)

You must use parentheses for functions which have more than one argument. Using parentheses always makes programs cl ear er.

See Chapter 8 for a complete I ist of functions available on the PC-3.

57

CHAPTER 5 PROGRAMMING THE PC-3
In the previous chapter we examined some of the concepts and terms of the BASIC programming language. In this chapter you will

use these elements to create programs on the PC-3. Let us reiterate, however, that this is not a manual on how to program in

BASIC. What this chapter will do is familiarize you with the use of BASIC on your PC-3.

Programs

A program consists of a set of instructions to the computer. Remember the PC-3 is only a machine. It will perform the exact
operations that you specify. You, the programmer, are responsible for issuing the correct instructions.

BASIC Statements

The PC-3 interprets instructions according to a predetermined format. This format is called a statement. You always enter BASIC

statements in the same pattern. Statements must start with a line number:

10: PRINT "HELLO"

20: READ B (10)

30: END

Line Numbers

Each line of a program must have a unique line number -- any integer between 1 and 999. Line numbers are the reference for the

computer. They tell the PC-3 the order in which to perform the program. You need not enter lines in sequential order (although

if you are a beginning programmer, it is probably less confusing for you to do so). The computer always begins execution with the

lowest line number and moves sequentially through the lines of a program in ascending order.

59

When programming, it is wise to allow increments in your line numbering (10, 20, 30, ... 10, 30, 50 etc). This enables you to

insert additional lines, if necessary.

CAUTION: Do not use the same line numbers in different programs. If you use the same line number, the oldest line with that

number is deleted when you enter the new line.

BASIC Verbs

All BASIC statements must contain verbs. Verbs tell the computer what action to perform. A verb is always contained within a

program and, as such, is not acted upon immediately.

10: PRINT "HELLO"

20: READ B (10)
30: END

Some statements require or allow an operand:

10: PRINT "HELLO"

20: READ 8(10)

30: END

Operands provide information to the computer telling it what data the verb will act upon. Some verbs require operands; with

other verbs they are optional. Certain verbs do not allow operands. (See Chapter 8 for a complete listing of BASIC verbs and their

uses on the PC-3.)

BASIC Commands

Commands are instructions to the computer which are entered outside of a program. Commands instruct the computer to perform

60

some action with your program or to set modes which effect how your programs are executed.

Unlike verbs, commands have immediate effects - as soon as you complete entering the command (by pressing the (ENTER) key),

the command will be executed. Commands are not preceded by a line number:

RUN
NEW
RADIAN

Some verbs may also be used as commands. (See Chapter 8 for a complete listing of BASIC commands and their uses on the PC-3.

Modes

You will remember that, when using the PC-3 as a calculator, it is set in the RUN mode.

The RUN mode is also used to execute the programs you create.

The PROgram mode is used to enter and edit your programs.

The RSV or ReSerVe mode enables you to designate and store predefined string variables and is used in more advanced pro­

gramming (see Chapter 6).

Beginning to Program on the PC-3

After all your practice in using the PC-3 as a calculator, you are probably quite at home with the keyboard. From now on, when

we show an entry, we will not show every keystroke. Remember to use (SHIFT) to access characters above the keys and END

EVERY LINE BY PRESSING THE (ENTER) KEY.

Now you are ready to program! Set the slide switch to the PROgram mode and enter this command:
61

Input

NEW >

The NEW command clears the PC-3's memory of all existing programs and data. The prompt appears after you press (ENTER) ,

indicating that the computer is awaiting input.

Example 1 - Entering and Running a Program

Make sure the PC-3 is in the PRO mode and enter the following program:

Input

10 PRINT "HELLO" 10: PRINT "HELLO"

Notice that when you push (ENTER) , the PC-3 displays your input, automatically inserting a colon (:) between the line number

and the verb. Verify that the statement is in the correct format.

Now slide the selector switch to the RUN mode:

RUN HELLO

62

Since this is the only line of the program, the computer will stop executing at this point. Press (ENTER) to get out of the program

and reenter RUN if you wish to execute the program again.

Example 2 - Editing a Program

Suppose you wanted to change the message that you program was displaying; that is, you wanted to edit your program. With a

single line program you could just retype the entry, but as you develop move complex programs editing becomes a very important

component of your programming. Let's edit the program you have just written.

Are you still in the RUN mode? If so, switch back to the PR Ogram mode.

You need to recall your program in order to edit it. Use the Up Arrow (t) to recall your program. If your program was com­

pletely executed, the GJ will recal I the last line of the program. If there was an error in the program, or if you used the BREAK

((BREAK)) key to stop execution, the GJ will recall the line in which the error or BREAK occurred. To make changes in your

program, use the GJ to move up in your program (recall the previous line) and the CD to move down in your program (display

the next line). If held down, the GJ and the CD will scroll verticaly; that is, they will display each line moving up or down in

your program.

You will remember that to move the cursor within a line you use the ~ (right arrow) and ~ (left arrow). Using the~ ,

position the cursor over the first character you with to change:

Input Display

t 10: PRINT

63

Input Display

10: PRINT "BELLO"
s-:F;f~

Notice that the cursor is now in the flashing block form, indicating that it is "on top of" an existing character. Type in:

Input Display

GOODBYE"! 10PRINT"GOODBYE"! _

Don't forget to press (ENTER) at the end of the line. Switch into the RUN mode.

Input Display

RUN ERROR 1 IN 10

This is a new kind of error message. Not only is the error type identified (our old friend the syntax error), but the line number in

which the error occurs is also indicated.

Switch back into the PROgram mode. You must be in the PROgram mode to make changes in a program. Using the t, recall the

last line of your program.

64

Input Display

t 10: PRINT " G O O D B Y E "Iii f;wz

The flashing cursor is positioned over the problem area. In Chapter 4 you learned that, when entering string constants in BASIC,

all characters must be contained with in quotation marks. Use the DE Lete key to el im in ate the "! ".

Input Display

DEL 10: PRINT "GOODBYE"_

Now let's put the! in the correct location. When editing programs, DELete and INSert are used in exactly the same way as they are

in editing calculations (see Chapter 3). Using the ~ position the cursor on top of the character which will be the first character

following the insertion.

Input Display

.... 10: PRINT

Press the I NSert key. A will indicate the spot where the new data will be entered.

65

Input Display

INS 10: PRINT "GOODBYE I"

Type in the!. The display looks like this:

Input Display

10: PRINT "GOODBYE!II
ff§/£$.

Remember to press (ENTER) so the correction will be entered into the program.

NOTE: If you wish to DELete an entire line from your program, just type in the line number and the original line will be elimi­

nated.

Example 3 - Using Variables in Programming

If you are unfamiliar with the use of numeric and string variables in BASIC, reread these sections in Chapter 4.

Using variables in programming allows much more sophisticated use of the PC-3's computing abilities.

Remember, you assign simple numeric variables using any letter from A to Z.

A= 5

To assign string variables, you also use a letter following by a dollar sign. Do not use the same letter in designating a numeric and

66

a string variable. You cannot designate A and A$ in the same program.

Remember that simple string variables cannot exceed 7 characters in length:

A$ = "TOTAL"

The values assigned to a variable can change during the execution of a program, taking on the values typed in or computed during

the program. One way to assign a variable is to use the INPUT verb. In the following program, the value of A$ will change .in

response to the data typed in answering the inquiry "WORD?". Enter this program:

10 INPUT "WORD?"; A$
20 B = LEN (A$)
30 PRINT "WORD IS "·

40 END
l__J LJ

B; " LETTERS"
LJ

means space

Before you RUN the program, notice several new features. Line 30 of th is program exceeds the 24-character maximum of the

PC-3's display. When a line is longer than 24 characters (up to the 79-character maximum), PC-3 moves the characters to the left

as the 24-character maximum is exceeded. Th is does not destroy the previous input. Th is moves to the left is referred to as

horizontal scrolling.

The second new element in this program is the use of the END statement to signal the completion of a program. END tells the

computer that the program is completed. It is always good programming practice to use an END statement.

As your programs get more complex, you may wish to review them before you begin execution. To look at your program, use the

LIST command. LIST, which can only be used in the PROgram mode, displays programs beginning with the lowest line number.

Try I isting th is program:

67

Input Display

LIST 10: INPUT "WORD?";A$

Use the C[) and OJ arrows to move through your program until you have reviewed the entire program. To review a line which

contains more than 24 characters, move the cursor to the extreme right of the display and the additional characters will appear

on the screen.

Input Display

RUN WORD?_

HELP WORD IS 4. LETTERS

>

This is the end of your program. Of course you may begin it again by entering RUN. However, this program would be a bit more

entertaining if it presented more than one opportunity for input. We will now modify the program so it will keep running without

entering RUN after each answer.

Return to the PRO mode and use the up or down arrows (or LIST) to reach line 40.

You may type 40 to Delete the entire line or use the CB to position the cursor over the E in End. Edit line 40 so that it reads:

40: GOTO 10
68

Now RUN the modified program.

The GOTO statement causes the program to loop (keep repeating the same operation). Since you put no limit on the loop it will

keep going forever (an "infinite" loop). To stop this program hit the BREAK (~) key.

When you have stopped a program using the ~ key, you can restart it using the CONT command. CONT stands for CONTinue.

With the CONT command, the program will restart on the line which was being executed when the ~ key was pressed.

Example 4 - More Complex Programming

The following program computes N Factorial (N!). The program begins with 1 and computes N! up to the limit which you enter.

Enter th is program.

100 F = 1: WAIT 128
110 INPUT "LIMIT? "; L

120 FOR N = 1 TO L

130 F = F * N
140 PRINT N, F
150 NEXT N
160 END

Several new features are contained in this program. The WAIT verb in line 100 controls the length of time that displays are held

before the program continues. The numbers and their factorials are displayed as they are computed. The time they appear on the

display is set by the WAIT statement to approximately 2 seconds, instead of waiting for you to press (ENTER) .

Also on line 100, notice that there are two statements on the same line separated by a colon (:). You may put as many statements

as you wish on one line, separating each by a colon, up to the 80-character maximum including (ENTER) . Multiple statement

69

lines can make a program hard to read and modify, however, so it is good programming practice to use them only where the state­

ments are very simple or there is some special reason to want the statements on one I ine.

Also in this program we have used the FOR verb on line 120 and the NEXT verb on line 150 to create a loop. In Example 3, you

created an "infinite" loop which kept repeating the statements inside the loop until you pressed the ~ key. With this FOR/

NEXT loop, the PC-3 adds 1 to N each time execution reaches the NEXT verb. It then tests to see if N is larger than the limit L.
If N is less than or equal to L, execution returns to the top of the loop and the statements are executed again. If N is greater than

L, execution continues with the 160 and the program stops.

You may use any numeric variable in a FOR/NEXT loop. You also do not have to start counting at 1 and you can add any amount

at each step. See Chapter 8 for details.

We have labelled this program with line numbers starting with 100. Labelling programs with different line numbers allows you to

have several programs in memory at one time. To RUN this program instead of the one at line 10 enter:

RUN 100

In addition to executing different programs by giving their starting line number, you can give programs a letter name and start

them with the DEF key (see Chapter 6).

You will notice that while the program is running, the BUSY indicator is lit at those times that there is nothing on the display.

RUN the program a few more times and try setting Nat several different values.

Storing Programs in the PC-3's Memory

You will remember that settings, ReSerVe keys, and functions remain in the computer even after it is turned OFF. Programs

also remain in memory when you turn off the PC-3, or it undergoes an AUTO OFF. Even if you use the ~ , Clear or CA
70

keys, the programs will remain.

Programs are lost from memory only when you perform the following actions:

* You enter NEW before beginning programming.

* You initialize the computer using the ALL RESET button.

* You create a new program using the SAME LINE NUMBERS as a program already in memory.

* You change the batteries.

This brief introduction to programming on the PC-3 should serve to illustrate the exciting programming possibilities of your new

computer. For more practice in programming exercises, please see Chapter 9.

71

CHAPTER 6 SHORTCUTS
The PC-3 includes several features which make programming more convenient by reducing the number of keystrokes required to

enter repetitive material.

One such feature is the availability of abbreviations for verbs and commands (See Chapter 8).

This chapter discusses two additional features which can eliminate unnecessary typing - the DEF key and the ReSerVe mode.

The DEF Key and Labelled Programs

Often you will want to store several different programs in the PC-3's memory at one time. (Remember that each must have unique

line numbers.) Normally, to start a program with a RUN or GOTO command, you need to remember the beginning line number

of each program (see Chapter 8). But, there is an easier way! You can label each program with a letter and execute the program

using only two keystrokes. This is how to label a program and execute it using DEF:

* Put a label on the first line of each program that you want to reference. The label consists of a single character in quotes,

followed by a colon.

10: "A": PRINT "FIRST"

20: END
80: "B": PRINT "SECOND"
90: END

Any one of the following characters can be used: A, S, D, F, G, H, J, K, L, =, Z, X, C, V, B, N, M, and SPC. Notice that

these are the keys in the last two rows of the alphabetic portion of the keyboard. This area has been darkened on your

keyboard to make it easier for you to remember.
73

* To execute the program, instead of typing RUN 80 or GOTO 10, you need only to press the @m key and then the letter

used as a label. In the above example, pressing @ and then 'B' would cause 'SECOND' to appear on the display.

When DEF is used to execute a program, variables and mode settings are affected in the same way as when GOTO is used. See

Chapter 8 for details.

ReSerVe Mode

Another timesaving feature of the PC-3 is the ReSerVe mode.

Within the memory of the PC-3, 47 characters are designated for "Reserve Memory". You can use this memory to store frequently­

used expressions, which are then recalled by a simple two-keystroke operation.

NOTE: You store the strings in the ReSerVe mode and recall them for use in the RUN and PROgram modes.

Try this example of storing and recalling a reserved string.

Switch the PC-3 into ReSerVe mode by moving the slide switch to the RSV position.

Type NEW, followed by the (ENTER) key. This will clear out any previously stored characters in the same way NEW clears out

stored programs in the PROgram mode.

Type (SHIFT) followed by 'A'.

Display

(SHIFT) A A:-

74

Notice that the" A" appears in the display at the left followed by a colon.

Enter the word 'PRINT' and press the (ENTER) key.

Display

PRINT (ENTER) A: PRINT

A space appears after the colon signalling you that 'PRINT' is now stored in the reserve memory under the letter A.

Switch the PC-3 into PROgram mode. Type NEW followed by (ENTER) to clear the program memory. Type '10' as a line number

and then press (SHIFT) and the 'A' key:

Display

10 (SHIFT) A 10 PRINT_

10: PRINT

Immediately the word "PRINT" will appear in the display after the line number.

Any character sequence can be stored in ReSerVe Memory. The stored strings can be recalled at any time in either the program

or the RUN mode by typing (SHIFT)and the key that the string is stored under. The keys available are the same as those used with

DEF, i.e., those in the dark area of the keyboard.

75

To edit a stored character sequence, switch into the ReSerVe mode and press(SHIFT)and the key under which the sequence is stored.

You can then edit using the Left Arrow, Right Arrow, DEL, and INS keys in the same way as in other modes.

When the last character in a stored sequence is a '@' character, it is interpreted as @t@) when the sequence is recalled. For

example, if you store the string "GOTO 100@" under the 'G' key, typing (SHIFT) and 'G' in the RUN mode immediately starts

execution of the program at line 100. Without the '@' character, you must press (ENTER) after the (SHIFT) and 'G' to begin

execution.

Templates

Two templates are provided with the PC-3. You can use these templates to help you remember frequently used ReSerVe sequences

or DEF key assignments. After you have labelled the programs or created the sequences, mark the templates so you know what

is associated with each key. You can then execute programs or recall sequences using the two-keystroke operation.

For example, if you have one group of programs which you often use at the same time, label the programs with letters and mark

the template so that you can easily begin execution of any of the programs with two keystrokes. You might also store frequently­

used BASIC commands and verbs in the Reserve Memory and mark a template to speed to entering BASIC programs.

Example:
SIN COS TAN ASN ACS ATN

□□□□□□□□□□
RUN NEW INP. PAI. A*A B*B

□□□□□□□□ '---I___,

76

CHAPTER 7 USING THE PC-3 PRINTER/CASSETTE INTERFACE
The PC-3 Printer/Cassette Interface allows you to add a printer and cassette interface to your Radio Shack PC-3 Pocket Computer.

The PC-3 Printer/ Cassette Interface features:

* 24-character-wide thermal printer with approximately a 48-line-per-minute print speed.

* Convenient paper feed and tear bar.

* Simultaneous printing of calculations as desired.

* Easy control of display or printer output in BASIC.

* Cassette interface to connect to any standard cassette recorder.

* Manual and program control of recorder for storing programs, data, and reserve key settings.

* Filenames and passwords on tape for control and security.

* Built-in rechargable Nickel-Cadmium batteries for portability.

* Recharger supplied.

Introduction to the Machine

Before you begin to use the PC-3 Printer/Cassette Interface you should first become familiar with its components. Examine the
front of the machine:

77

PAPER TAPE
COMPARTMENT

PINS FOR
COMPUTER

PAPER FEED
BUTTON

I

~ ~
b
L-,_
L---
L-
L--.....

REMOTE PRINTER LOW BATTERY
L!:::l,.

o"I\D'o, o"O!lo, 9
TRS• D

I
LOW BATTERY INDICATOR

PRINTER SWITCH

REMOTE SWITCH

CHECK CONN EC
(For service only)

I

□

Figure 14. Printer/Cassette Interface (Front View)

78

TOR

AC ADAPTER
JACK

CASSETTE RECORDER
JACK

* REMOTE switch. This switch is used to operate the Cassette Recorder manually.

* PRINTER ON/OFF. This switch is used to turn the printer on and off to conserve batteries when not in use.

* LOW BATTERY indicator. This indicates when there is insufficient power to operate the PC-3 Printer/Cassette Interface

* Paper feed button. Pressing this key will feed the paper in the printer.

Power

PC-3 POCKET COMPUTER

nnl=:

PC-3 PRINTER/
CASSETTE INTERFACE

EAR Ml C REM

0 0 0

REMOTE JACK
MICROPHONE JACK

EARPHONE JACK

Figure 15. PC-3 Printer/Cassette Interface (Right Side View)

The PC-3 Printer/Cassette Interface is powered by a rechargeable Nickel Cadmium battery. It is necessary to recharge the battery

when the low battery indicator comes ON.

79

To recharge the battery, turn the Computer and Printer/Cassette Interface power OFF, connect the AC adapter to the Printer/
Cassette Interface, and plug the AC adapter into a wall outlet. (See the diagram.) It will take about 15 hours before the battery

is fully charged.

Important Note! Using any AC adapter other than the one supplied may damage the Printer/Cassette Interface.

PC-3 PRINTER/CASSETTE-----------+
INTERFACE

AC ADAPTER

AC ADAPTER CONNECTING
JACK OF PC-3 PRINTER/
CASSETTE INTERFACE WALL OUTLET

Figure 16. How to Connect the AC Adapter

Always connect the recharger to the Printer/Cassette Interface first. Then plug the recharger into the wall socket.

When the batteries in the PC-3 Printer/Cassette Interface become discharged, the low battery indicator on the front of the unit

lights up and the unit will not function. At this point, you must recharge the batteries. When you first receive your Printer/

Cassette Interface it is likely that the batteries insufficiently charged due to the time spent in storage. The unit will require charging

before its first use.

80

NOTE: When the Computer is used with the Printer/Cassette Interface and the battery power of the Computer decreases, the

power will be supplied to the Computer from the Printer/Cassette Interface.

Connecting the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface

To connect the PC-3 Pocket Computer to the PC-3 Printer/Cassette Interface, use the following procedure:

1. Turn OFF the power in both units.

NOTE: It is important that the power be OFF on the Computer before connecting the units, or the Computer may "hang

up". If this should occur, use the ALL RESET button to clear the Computer.

2. Remove the protective pin cover from the left side of the Computer and snap it into place on the bottom of the Printer/

Cassette Interface.

Snap into place here

Protective pin cover

Figure 17. Figure 18.

81

3. Place the Computer on the Printer/Cassette Interface shown in Fig. 19.

4. Lay the Computer down flat.

5. Gently slide the Computer to the left so that the pins on the Printer/Cassette Interface are inserted into the plug on the

Computer.

DO NOT FORCE the Computer and Printer/Cassette Interface together. If the two parts do not mate easily, STOP and

check to see that the parts are correctly aligned.

Figure 19. Figure 20.

82

6. To use the Printer, turn on the PC-3 Computer power switch, and then the Printer switch.

Press the @ key.

If the @ key is not pressed, the Printer may not operate.

Note: If executed when the Printer switch is set at the OFF position, printing causes an error (ERROR code 8). (The low battery

indicator may light up at this point.)

In this case, turn the Printer switch ON, and press the@) key. Then, execute the printing again.

Loading the Paper
(1) Turn off the Printer switch.

(2) Open the paper cover. (Fig. 21)

Paper cover

Figure 21.

(3) Insert the leading edge of the roll of paper into the slot located in the paper tape compartment. (Fig. 22) (Fig. 23)

(Any curve or crease near the beginning of the paper makes insertion difficult.)

83

Figure 22.

NOTE: Use of irregular paper tape may cause irregular paper feeding or paper

misfeed. Therefore,be sure to tighten the roll before using,as shown in
the figure.

Figure 23.

Figure 24.

<§i;"':;'8
Wrong Right

(4) Turn on the Printer switch and press the paper feed button until the paper comes out of the Printer mechanism. (Fig. 25)

Paper feed button

Paper cutter

(5) Install the roll of paper into the compartment.
Printer switch

84

Roll of Paper______--

Figure 26.

• To release paper from the printer, cut the paper on the side of the paper roll compartment and then pull it straight out to the

cutter side.

Do not pull the paper backwards, as this may cause damage to the Printer mechanism.

CAUTION:
Paper tape is available wherever the PC-3 Printer/Cassette Interface is sold.

Please order replacement paper tape to your local Radio Shack store. Please specify Model name when ordering. The paper

tape is specifically designed for this unique Printer. Use of any other paper tape may cause damage to the unit.

Using the Printer

If you are using the PC-3 Computer as a calculator, you may use the PC-3 Printer to simultaneously print your calculations. This is

easily accomplished by pressing the (SHIFT) key and then the (ENTER) key (P <-+ NP). (The printer indicator "P" will be dis­

played. If not, press the (SHIFT) and (ENTER) keys. Check to see that the mode switch is set at the RUN position.) After this,

85

when you press (ENTER) at the end of a calculation, the contents of the display will be printed on one line and the results will be

printed on the next. For example:

Input

300 / 50

Paper

300/50
6.

You may print output on the Printer from within BASIC programs by using the LPRINT statement (see Chapter 8 for details).

LPR INT functions in exactly the same fashion as the PR INT statement, since both the display and the Printer are 24 characters

wide. The only difference is that, if you PR INT something to the display which is longer than 24 characters, there is no way for

you to see the extra characters. With the LPRINT verb, the extra characters will be printed on a second and possibly a third line,

as is required.

Programs which have been written with PRINT can be converted to work with the Printer by including a PRINT=LPRINTstate­

ment in the program (see Chapter 8 for details). ALL PRINT statements following this statement will act as if they were LPRINT

statements. PRINT=PRINT will reset this condition to its normal state. This structure may also be included in a program in an

IF statement allowing a choice of output at the time the program is used (see Relationship of Two Variables example in Chapter 9).

You may also list your programs on the Printer with the LUST command (see Chapter 8 for details). If used without line numbers,

LUST will list all program lines currently in memory in their numerical order by line number. A line number range may also be

given with LUST to limit the lines which will be printed. When program lines are longer than 24 characters, two or more lines

may be used to print one program line. The second and succeeding lines will be indented four characters so that the line number

will clearly identify each separate program I ine.

86

Caution:

• In case an error (ERROR code 8) occurs due to a paper misfeed, tear off the paper tape, and pull the remaining part of the

paper tape completely out of the Printer. Then press the @ key to clear the error condition.

• When the Printer/Cassette Interface is exposed to strong external electrical noise, it may print numbers at random. If this

happens, depress the ~ key to stop the printing; then press the @ key.

Pressing the @ key will return the Printer to its normal condition.

[

When the Printer causes a paper misfeed or is exposed to strong external electrical noise while printing, it may not operate]

normally and only the symbol "BUSY" is displayed. If this happens, depress the ~ key to stop the printing. (Release

the paper misfeed .) Press the @ key.

• When the PC-3 Printer/Cassette Interface is not in use, turn off the Printer switch to save the battery life.

• Even while printing under the LPRINT command, the entry can be executed when an INPUT, INKEY$ or PRINT command is

performed.

In this case, however, the Printer will stop if the @ key is pressed. Therefore, be sure to press the@ key upon completion

of printing.

Using a Cassette Recorder
With the Cassette Recorder connected, you can use the following commands:

CSA VE Saves the contents of a program or reserve memory on tape.

CLOAD Retrieves a program or reserve memory from tape.

CLOAD? Compares the program on tape with the contents of memory to insure that you have a good copy.

87

MERGE Combines a program on tape with one already in memory.

PRINT# Saves the contents of variables on tape.

INPUT# Retrieves the contents of variables from tape.

CHAIN Starts execution of a program which has been stored on tape.

Programs may be assigned filenames which will be stored on the tape. This allows the unambigous storage of many programs on

one tape. Programs can then be retrieved by name and the tape will be searched to find the appropriate file. If programs have

been password-protected in memory, they cannot be stored on tape, but a password can be assigned at the time that unprotected

programs are CSAVEd. Such password-protected programs can be used by other person, but they will not be able to LIST or

modify the programs in any way.

See Chapter 8 for details on all these verbs and commands.

When a program or data is recorded on tape, it will be preceded by a high-pitched tone of approximately 7 seconds. This tone

serves to advance the tape past any leader and to identify the beginning of each program or set of data.

NOTE: Whenever you wish to read in something from tape, it is essential that the tape be positioned on one of these leader

tone areas.

When searching for a filename, the tape can read only in a forward direction. This search is relatively slow, so it is sometimes

preferable to keep track of program locations by using tape counter. Using fast forward, rewind or play, the tape can be manually

positioned to the leader tone area of the correct program before the retrieval is started. While scanning the tapes, you will be

able to hear the high tones which begin each program. In between these high tones will be a mixed high and low tone sound which

indicates programs or data.

88

See the Operation Manual supplied with the PC-3 Printer/Cassette Interface for more detailed operating instructions.

PC-3 PRINTER/CASSETTE
INTERFACE

[~~~]
CASSETTE RECORDER

l t ♦

Figure 27. Cassette Cables and Interface Jacks

89

Figure 28. Recorder Connected to Interface

• To transfer program and data from the tape, use the tape recorder with which the tape was prerecorded. A tape recorder, if

different from that used for recording, may cause no transfer of the prerecorded tape.

Care and Maintenance

* Be sure that the power is OFF on both units when connecting or disconnecting the Printer/Cassette Interface and the

Computer.

* The Printer should be operated on a level surface.

* The unit should be kept away from extreme temperatures, moisture, dust, and loud noises.

* Use a soft, dry cloth to clean the unit. DO NOT use solvent or a wet cloth.

* Keep foreign objects out of the unit.

Errors

If the batteries become low, or if the Printer/Cassette Interface is subjected to strong noise, the unit may cease to function and the

Pocket Computer may "hang up". This can also occur if the units are connected and the power is not turned on the Printer/

Cassette Interface when a LPRINT or LLIST command is used. In some cases, ERROR 8 may be displayed on the Computer.

The Clear key may usually be used to clear this condition, but in some cases the ALL RESET may be required. Be sure to restore

adequate power to Printer/Cassette Interface before attempting to use it again.

Examples

The procedures for the Computer and the Cassette Recorder operation

90

1. Saving
(1) Turn off the REMOTE switch.

(2) Put a tape into the Cassette Recorder.

(3) Turn on the REMOTE switch.

(4) Depress the RECORD button.

(5) With the same command which saves your program, you must give the program a "filename". This is for reference pur­

poses. Your filename cannot be longer than 7 characters. To save the program with a filename, type:

CSAVE (SHIFT) " PR0-1 (SHIFT) "

Your program will be saved with the name "PR0-1". You can assign any name you desire, whatever is easiest for you to keep

track of. Also, note that there is a 7-character length limit for your filename. If the name is longer than 7 characters, the excess

is ignored. A good practice is to maintain a program log, which includes the program name, starting and stopping locations on

tape (use the counter numbers), and a brief description of what the program does.

Press the (ENTER) key. At this time, you should hear a shrill buzzing sound, and the tape should be turning. Also, the "BUSY"

indicator should light up. This tells you that the computer is "busy" transferring your program from memory to the tape. If

this does not happen, start again from the beginning of the section.

Once the computer arrives at the end of the program, the "BUSY" indicator light will go off, the recorder will stop, and the

"prompt" will re-appear on the display. In order to insure that this has in fact been accomplished, we can read it back into

memory from the tape as explained in the next section.

91

2. Collating the Computer and Tape Contents

Now that the your program is saved on tape, you will no doubt want to see if it is really there. To do this is relatively simple;

use the CLOAD? command.

(1) Turn off the REMOTE switch to clear remote control functions.

(2) Rewind the tape to the place at which you started, again using the number counter.

(3) Turn on the REMOTE switch to set remote control functions.

(4) Depress the PLAY button.

(5) To collate the program with a filename type:

CLOAD (SHIFT) ? (SHIFT) "PRO-1 (SHIFT) "

Press the (ENTER) key.

The computer compares the CSA VEd program with the one in its memory. If all went wel I, it will display the "prompt" and end

its check. If all did not go well, an error message will be displayed, usually ERROR 8. This tells you that the program on tape is

somehow different from the program in computer's memory. Erase that portion of tape and start again.

3. Transfer from Tape
(1) Turn off the REMOTE switch.

(2) Rewind the tape to the place at which you started, again using the number counter.

(3) Stop rewinding.

(4) Turn the REMOTE switch back ON.

(5) Press the PLAY button.

92

(6) Type:

CLOAD (SHIFT) "PR0-1 (SHIFT) "

and press the (ENTER) key.

(Remember "PR0-1" is the filename we have given to your program. If you saved the program under another name, you

must use that name instead of PR0-1.)

(7) The "BUSY" indicator will now light up, and the program will be brought back into the Computer's memory for use.

(8) The cassette retains a copy of the program, so you can CLOAD the same program over and over again!

If an error message (ERROR 8) is displayed while loading, start again from the above step (1).

Precautions for collation and transfer

The program is recorded on tape as illustrated below:

+-- Tape transport direction

{ I 11111111 ~
~.-_Non_-signal __ ~ j ===-----1 section (Beep) ' j

Figure 28. Filename

When the tape is played back, its non-signal section produces a specific continuous beep, while the filename and program­

recorded sections cause an intermittent beep.

93

If collation or transfer was not done properly, the "BUSY" symbol does not disappear and the tape does not stop. To stop the

tape operation, press the~ key. Then, try again from the beginning.

94

CHAPTER 8 BASIC REFERENCE
The following chapter is divided into three sections:

Commands: Instructions which are used outside a program to change the working environment, perform utilities, or control

programs.

Verbs: Action words used in programs to construct BASIC statements.

Functions: Special operators used in BASIC programs to change one variable into another.

Commands and verbs are arranged alphabetically. Each entry is on a separate page for easy reference. The contents of each section

are shown in the tables below so that you can quickly identify the category to yvhich an operator belongs. Functions are grouped

according to four categories and arranged alphabetically within each category.

95

Program Control

CONT
GOTO*
NEW

RUN

Cassette Control

CLOAD
CLOAD?
CSAVE
INPUT#*
MERGE
PRINT#*

Debugging

LIST
LLIST
TROFF*
TRON*

Commands

Variables Control

CLEAR

DIM*

Angle Mode Control

DEGREE*
GRAD*
RADIAN*

Other

BEEP*
PASS*
RANDOM*

USING*
WAIT*

*These commands are also BASIC verbs. Their effect as commands is identical to their effect as verbs, so they are not described in

the command reference section. See the verb reference section for more information.

96

Verbs

Control and Branching Input and Output Other

CHAIN AREAD BEEP
END CSAVE DEGREE
FOR DATA GRAD
GOSUB INPUT RADIAN
GOTO INPUT# RANDOM
IF ... THEN LPRINT REM
NEXT PAUSE TROFF
ON ... GOSUB PRINT TRON
ON ... GOTO PRINT#
RETURN USING
STOP READ

RESTORE
Assignment and Declaration WAIT

CLEAR
DIM
LET

97

Pseudovariables

INKEY$

MEM
Pl

String Functions

ASC
CHR$
LEFT$
LEN
MID$
RIGHT$
STR$
VAL

Functions

98

Numeric Functions

ABS

ACS
ASN
ATN
cos
DEG
DMS
EXP
INT
LOG
LN
RND
SGN

SIN
SOR
TAN

COMMANDS

CLOAD
2 CLOAD "filename"

Abbreviations: CLO., CLOA.

See also: CLOAD?, CSAVE, MERGE, PASS

Purpose

The CLOAD command is used to load a program saved on cassette tape. It can only be used with the optional PC-3 Printer/
Cassette Interface.

Use

The first form of the CLOAD command clears the memory of existing programs and loads the first program stored on the tape,

starting at the current position.

The second form of the CLOAD command clears the memory, searches the tape for the program whose name is given by "file­

name", and loads the program.

If the PC-3 Computer is in the PROgram or RUN mode, program memory is loaded from the tape. When the Computer is in the

ReSerVe mode, reserve memory is loaded. Care should be taken not to load programs into reserve memory or reserve characters

into program memory.

99

Examples

CLOAD Loads the first program from the tape.

CLOAD "PR03" Searches the tape for the program named "PR03" and loads it.

Notes:

1. The computer cannot identify the stored contents as a program or a reserve. Therefore, if a mode is designated incorrectly,

the reserved contents may be transferred to the program area or the program to the reserve area, causing the computer to remain

inoperative. If this happens, reset the computer by pressing the RESET button on the back of the computer.

2. If the designated filename is not retrieved, the computer will continue to search for the filename even after the tape reaches the

end. In this case, stop the retrieval function by pressing the~ key. This applies to MERGE, CHAIN, CLOAD? and INPUT#

commands to be described later.

3. If an error occurs during CLOAD or CHAIN command (to be described later) execution, the program stored in the computer

will be invalid.

100

1 CLOAD?

2 CLOAD? "filename"

Abbreviations: CLO.?, CLOA.?

See also: CLOAD, CSAVE, MERGE, PASS

Purpose

The CLOAD? command is used to compare a program saved on cassette tape with one stored in memory. It can only be used with

the optional PC-3 Printer/Cassette Interface.

Use
The first form of the CLOAD? command compares the program stored in memory with the first program stored on the tape,

starting at the current position.

The second form of the CLOAD? command searches the tape for the program whose name is given by "filename" and then com­

pares it to the program stored in memory.

Examples

CLOAD? Compares the first program from the tape with the one in memory.

CLOAD? "PRO3" Searches the tape for the program named 'PR03' and compares it to the one stored in memory.

101

1 CONT

Abbreviations: C., CO., CON.

See also: RUN; STOP verb

Purpose

The CONT command is used to continue a program which has been temporarily halted.

Use

When the STOP verb is used to halt a program during execution, the program can be continued by entering CONT in response to

the prompt.

When a program is halted using the ~ key, the program can be continued by entering CONT in response to the prompt.

Examples

CONT Continues an interrupted program execution.

102

CSAVE
2 CSAVE "filename"

3 CSA VE, "password"

4 CSA VE "filename", "password"

Abbreviations: CS., CSA., CSAV.

See also: CLOAD, CLOAD?, MERGE, PASS

Purpose

The CSAVE command is used to save a program to cassette tape. It can be used with the optional PC-3 Printer/Cassette Inter­

face.

Use

The first form of the CSA VE command writes all of the programs in memory onto the cassette tape without a specified filename.

The second form of the CSA VE command writes all of the programs in memory onto the cassette tape and assigns the indicated

filename.

The third form of the CSAVE command writes all of the programs in memory onto the cassette tape without a specified filename

and assigns the indicated password. Programs saved with a password may be loaded by anyone, but only someone who knows

the password can list or modify the programs. (See discussion under PASS command.)

The fourth form of the CSAVE command writes all of the programs in memory onto the cassette tape and assigns the indicated
103

filename and password.

It the PC-3 Computer is in PROgram or RUN mode, program memory is loaded to the tape. When the PC-3 Computer is in the

ReSerVe mode, reserve memory is loaded.

Examples

CSAVE "PR03", "SECRET" Saves the programs now in memory onto the tape under the name 'PR03', protected with the

password 'SECRET'.

104

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: RUN

Purpose

The GOTO command is used to start executi?n of a program.

Use
The GOTO command can be used in place of the RUN command to start program execution at the line number specified by the

expression. If no expression is provided, execution begins with the first line.

GOTO differs from RUN in four respects:

1) The value of the interval for WAIT is not reset.

2) The display format established by USING statements is not cleared.

3) Variables and arrays are preserved.

4) PRINT= LPRINT status is not reset.

5) The pointer for READ is not reset.

Execution of a program with GOTO is identical to execution with the @0 key.

Examples

GOTO 100 Begins execution of the program at line 100.
105

1 LIST

2 LIST expression

Abbreviations: L., LI., LIS.

See also: LLIST

Purpose

The LIST command is used to display a program.

Use

The List command may only be used in the PROgram mode. The first form of the list command displays the statement with the

lowest line number.

The second form displays the statement with the nearest line number greater than the value of the expression. The Up Arrow and

Down Arrow keys may then be used to examine the program.

Examples

LIST 100 Displays I ine number 100.

106

LUST

2 L LIST expression-1 , expression-2

Abbreviations: LL., LLI.,. LLIS.

See also: LIST

Purpose

The LLIST command is used for printing a program on the optional PC-3 Printer/Cassette Interface.

Use

The LLIST command may only be used in the PROgram mode.

The first form prints all of the programs in memory.

The second form prints the statements from the line number with the nearest line equal to or greater than the value of expression

1 to the nearest line equal to or greater than the value of expression 2. There must be at least two lines between the two numbers.

Examples

LIST 100, 200 Lists the statements between line numbers 100 and 200.

107

1 MERGE
2 MERGE "filename"

Abbreviations: MER., MERG.

See also: CLOAD, CLOAD?, CSAVE; PASS verb

Purpose

The MERGE command is used to load a program saved on cassette tape and merge it with programs existing in memory. It can

only be used with the optional PC-3 Printer/Cassette Interface.

Use

The first form of the MERGE command loads the first program stored on the tape, starting at the current position, and merges

it with programs already in memory.

The second form of the MERGE command searches the tape for the program whose name is given by "filename", and merges it

with the programs already in memory.

Programs with overlapping line numbers are treated as one program after merging.

If the program in memory is passward-protected, another password-protected program cannot be merged with it. If the program

on cassette is not password-protected, it becomes protected by the password of the program in memory when merged.

108

Example

MERGE Merges the first program from the tape.

MERGE "PRO3" Searches the tape for the program named 'PR03' and merges it.

Note: For example, assume the Computer memory contains the following program:

10: PRINT "DEPRECIATION ALLOWANCE"
20: INPUT "ENTER METHOD: " ; A

At this point, you remember that you have a similar program portion on tape under the filename "DEP1". You will, of course,

want to see if this program has sections useful in the program you are currently constructing. The first step is to find the tape with

"DEP1" on it. Cue the tape to the place at which "DEP1" starts.

Now type: MERGE "DEP1"andpress (ENTER) .

The computer will now load "DEP1" into memory IN ADDITION to the above program. After "DEP1" is loaded, you might find

something in memory similar to this:

109

10: PRINT "DEPRECIATION ALLOWANCE"

20: INPUT "ENTER METHOD: "; A

10: "DEP1" : REM > > SECOND MODULE < <
20: PRINT "INTEREST CHARGES"

30: INPUT "AMOUNT BORROWED: "; B

(etc)

Note that, unlike the CLOAD command, the new program DID NOT replace the existing one and that some line numbers have been

duplicated. Also note that a "label" was used on the first line of the merged module. This allows "LINKING" of the modules

together (See LINKING MERGED MODULES - below).

It is important that you review the following information before proceeding with any further editing or programming:

IMPORTANT NOTES:

Once a MERGE is performed, no INSERTIONS, DELETIONS, or CHANGES are allowed to previously existing program lines.

110

Examples:

10 "A" REM THIS IS EXISTING PROGRAM

20 FOR T= 1 TO 100

30 LPRINT T

40 NEXT T

(Etc)

BEFORE doing a MERGE of the next program, make any necessary changes to this program.

Then MERGE the next program: MERGE "PROG2" (example)

10 "B" REM THIS IS MERGED PROGRAM

20 INPUT "ENTER DEPRECIATION: " D

30 INPUT "NUMBER OF YEARS: " ; Y

40 . Etc.

Now you may make changes to the above program since it was the last MERGED portion.

111

LINKING MERGED MODULES (programs) TOGETHER

Since the processor executes your program lines in logical sequence, it will stop when it encounters a break in the sequence in line

numbering; i.e., if line numbers 10, 20, 30 are followed by duplicate line numbers in a second module, the following techniques

are valid: GOTO "B" "GOSUB "B", IF ... THEN "B" (Bis used for example only, you can use any label).

112

1 NEW

Abbreviations: none

Purpose

The NEW command is used to clear the existing program or reserve memory.

Use

When used in the PROgram mode, the NEW command clears all programs and data which are currently in memory.

When used in the ReSerVe mode, the NEW command clears all existing reserve memory.

The NEW command is not defined in the RUN mode and will result in an Error 9.

Examples

NEW Clears program or reserve memory

113

1 PASS "character string"

Abbreviations: none

See also: CSAVE, CLOAD

Purpose

The PASS command is used to set and cancel passwords.

Use

Passwords are used to protect programs from inspection or modification by other users. A password consists of a character string

which is no more than seven characters long. The seven characters must be alphabetic or one of the following special symbols:

!"#$%&(l*+-/,.:;<=>?@y7fA

Once a PASS command has been given, the programs in memory are protected. A password-protected program cannot be examined

or modified in memory. It cannot be output to tape or listed with LIST or LLIST, nor is it possible to add or delete program lines.

If several programs are in memory and PASS is entered, all programs in memory are protected. If a non-password-protected

program is merged with a protected program, the merged program is protected. The only way to remove this protection is to

execute another PASS statement with the same password or to enter NEW (which erases the programs).

Examples

PASS "SECRET" Establishes the password 'SECRET' for all programs in memory.

114

1 RUN
2 RUN expression

Abbreviations: R., RU.

See also: GOTO

Purpose
The RUN command is used to execute a program in memory.

Use
The first form of the RUN command executes a program beginning with the lowest numbered statement in memory.

The second form of the RUN command executes a program beginning with the lowest numbered line greater than or equal to the

value of the expression.

RUN differs from GOTO in five respects:

1) The value of the interval for WAIT is reset.

2) The display format established by USING statements is cleared.

3) Variables and arrays other than the fixed variables are cleared.

4) PRINT= PRINT status is set.

5) The pointer for READ is reset to the beginning DATA statement.

115

Execution of a program with GOTO is identical to execution with the DEF key. In all three forms of program execution, FOR/

NEXT and GOSUB nesting is cleared.

Examples
RUN 10(1 Executes the program which begins at line number 100.

116

VERBS

1 AREAD variable name

Abbreviations: A., AR., ARE., AREA.

See also: INPUT verb and discussion of the use of the DEF key in Chapter 6.

Purpose
The A READ verb is used to read in a single value to a program which is started using the DEF key.

Use
When a program is labelled with a letter, so that it can be started using the DEF key, the AREAD verb can be used to enter a

single starting value without the use of the INPUT verb. The AREAD verb must appear on the first line of the program followin'.,;l

the label. If it appears elsewhere in the program, it will be ignored. Either a numeric or string variable may be used, but only one

can be used per program.

To use the AREAD verb, type the desired value in the RUN mode and press the DEF key, followed by the letter which identifies

the program. If a string variable is being used, it is not necessary to enclose the entered string in quotes.

117

Examples

111 "X": AREAD N
211 PRINT N.,.._ 2

311 END

Entering "7 @ X" will produce a display of "49".

Notes:

1. When the display indicates PROMPT (">") at the start of program execution, the designated variable is cleared.

2. When the contents are displayed by the PRINT verb at the start of program execution, the following is stored:

Example: When the program below is executed;

10 "A": PRINT "ABC", "DEFG"

20 "S" : AREAD A$: PRINT A$

RUN mode

@El W ➔ ABC DEFG

@ W ➔ DEFG

• When the display indicates PRINT numeric expression, numeric expression or PRINT "String", "String", the contents on the

right of the display are stored.

• When the display indicates PR I NT Numeric expression; Numeric expression; Numeric expression ... , the contents displayed

first (on the extreme left) are stored.

• When the display indicates PR INT "String"; "String"; "String" ... , meaningless contents may be stored.

118

1 BEEP expression

Abbreviations: B., BE., BEE.

Purpose

The BEEP verb is used to produce an audible tone.

Use

The BEEP verb causes the PC-3 Computer to emit one or more audible tones at 4 kHz. The number of beeps is determined by the

expression, which must be numeric. The expression is evaluated, but only the integer part is used to determine the number of

beeps.

BEEP may also be used as a command using numeric literals and predefined variables. In this case, the beeps occur immediately

after the (ENTER) key is pressed.

Examples

111 A=5:

211 BEEP 3

B$ = "9"

30 BEEP A

40 BEEP (A+4)/2

511 BEEP B$

611 BEEP -4

Produces 3 beeps.

Produces 5 beeps.

Produces 4 beeps.

This is illegal and will produce an ERROR 9 message.

Produces no beeps, but does not produce an error message.

119

CHAIN
2 CHAIN expression

3 CHAIN "filename"

4 CHAIN "filename", expression

Abbreviations: CH., CHA., CHAI.

See also: CLOAD, CSAVE, and RUN

Purpose

The CHAIN verb is used to start execution of a program which has been stored on cassette tape. It can only be used in connection

with the optional PC-3 Printer/Cassette Interface.

Use
To use the CHAIN verb, one or more programs must be stored on a cassette. Then, when the CHAIN verb is encountered in a

running program, a program is loaded from the cassette and executed.

The first form of CHAIN loads the first program stored on the tape and begins execution with the lowest line number in the

program. The effect is the same as having entered CLOAD and the RUN when in the RUN mode.

The second form of CHAIN loads the first program stored on the tape and begins execution with the line number specified by the

expression.

120

The third form of CHAIN searches the tape for the program whose name is indicated by "filename", loads the program, and begins

execution with the lowest line number.

The fourth form of CHAIN will searches the tape for the program whose name is indicated by "filename", loads the program,

and begins execution with the line number indicated by the expression.

Examples

10 CHAIN
20 CHAIN "PR0-2", 480

Loads the first program from the tape and begins execution with the lowest line number.

Searches the tape for a program named PR0-2, loads it, and begins execution with line number 480,

121

For example, let's assume you have three program sections named PRO-1, PRO-2, PRO-3. Each of these sections ends with a

CHAIN statement.

"PRO-1"

10:

20:

400: CHAIN

Execution

400: CHAIN "PRO-2",410

"PRO-2"

410:

Execution

700: CHAIN

700: CHAIN "PRO-3", 710

Magnetic tape

(" f "indicates the position of the tape recorder head.)

'

122

Filename
"PRO-2"

Filename
"PRO-2"

'

Filename
"PRO-3"

Filename
"PRO-3"

"PR0-3"

710:

Execution

990: END

-,

Filename
"PR0-2"

Filename
"PR0-3"

'

During execution, when the Computer encounters the CHAIN statement, the next section is called into memory and executed.

In this manner, all of the sections are eventually run.

123

1 CLEAR

Abbreviations: CL., CLE., CLEA.

See also: DIM

Purpose

The CLEAR verb is used to erase all variables which have been used in the program and to reset all preallocated variables to zero or

NUL.

Use

The CLEAR verb recovers space which is being used to store variables. This might be done when the variables used in the first

part of a program are not required in the second part and available space is limited. CLEAR may also be used at the beginning

of a program when several programs are resident in memory and you want to clear out the space used by execution of prior

programs.

CLEAR does not free up the space used by the variables A - Z, A$ - Z$, or A(1) - A(26) since they are permanently assigned

(see Chapter 4). CLEAR does reset numeric variables to zero and string variables to NUL.

Examples

10 A= 5 : DIM C(5)

211 CLEAR Frees up the space assigned to C() and resets A to zero.

124

1 DEGREE

Abbreviations: DE., DEG., DEGR., DEGRE.

See also: GRAD and RADIAN

Purpose

The DEG REE verb is used to change the form of angular values to decimal degrees.

Use

- -

The PC-3 Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms are used

in specifying the arguments to the SIN, COS, and TAN functions, and in returning the results from the ASN, ACS, and ATN

functions.

The DEGREE function changes the form for all angular values to decimal-degree form until a GRAD or RADIAN verb is used.

The OMS and DEG functions can be used to convert decimal degrees to degree, minute, second form and vice versa.

Examples

1,;I DEGREE

2,;I X = ASN 1 X now has a value of 90, i.e., 90 degrees, the Arcsine of 1.

125

1 DATA expression list

Where: expression list is:

or:

Abbreviations: DA., DAT.

See also: READ, RESTORE

Prupose

expression

expression , expression list

The DAT A verb is used to provide values for use by the READ verb.

Use
When assigning initial values to an array, it is convenient to list the values in a DATA statement and use a READ statement in a

FOR ... NEXT loop to load the values into the array. When the first READ is executed, the first value in the first DATA state­

ment is returned. Succeeding R EADs use succeeding values in the sequential order in which they appear in the program, regardless

of how many values are listed in each DAT A statement or how many DAT A statements are used.

DAT A statement have no effect if encountered in the course of regular execution of the program, so they can be inserted wherever

it seems appropriate. Many programmers like to include them immediately following the READ which uses them. If desired,

the values in a DATA statement can be read a second time by using the RESTORE statement.

126

Examples
10 DIM B(10)

20 FOR I = 1 TO 10
30 READ B(I)

40 NEXT I
50 DATA 1, 2, 3, 4, 5, 6

70 DATA 7, 8, 9, 10

Sets up an array.

Loads the values from the DATA statement into B().

B(1) will be 1, B(2) will be 2, B(3) will be 3, etc.

127

1 DIM dim list

Where: dim list is: dimension spec.

or: dimension spec., dim list

and: dimension spec. is: numeric dim spec.

and:

and:

and:

and:

and:

or: string dim spec.

numeric dim spec is:

string dim spec is:

or:

numeric name is:

string name is:

dims is:

or:

size is:

numeric name (size)

string name (dims)

string name (dims)*~

valid numeric variable name

valid string variable name

size

size, size

number of elements and:

and: len is: length of each string in a string array

Abbreviations: D., DI.

Purpose

The DIM verb is used to reserve space for numeric and string array variables.

128

Use

Except for A{26) and A${26), which are predefined {see Chapter 4), a DIM verb must be used to reserve space for any array

variable. An array variable and a simple variable may not have the same name. A sting array and a numeric array may have the

same name except for the dollar sign.

The maximum number of dimensions in any array is two: the maximum size of any one dimension is 255. In addition to the

number of elements specified in the dimension statement, one additional "zeroeth" element is reserved. For example, Dim 8(3)

reserves 8(0), 8(1), 8(2), and 8(3). In two-dimensional arrays, there is an extra "zeroeth" row and column.

In string arrays, one specifies the size of each string element in addition to the number of elements. For example, DIM 8$(3) * 12

reserves space for 4 strings which are each a maximum of 12 characters long. If the length is not specified, each string can contain

a maximum of 16 characters.

When a numeric array is dimensioned, all values are initially set to zero; in a string array the values are set to NUL.

A() and A$() may be dimensioned to sizes larger than 26 with the DIM statement. In this case part of the array is in the

preallocated memory and part is in program memory. (See Chapter 4.)

Examples

10 DIM 8(10)

20 DIM C$(4,4) * 10

Reserves space for numeric array with 11 elements.

Reserves space for a two-dimensional string array with 5 rows and 5 columns: each string will be a maxi­

mum of 10 characters.

129

END

Abbreviations: E., EN.

Purpose

The END verb is used to signal the end of a program.

Use

When multiple programs are loaded into memory at the same time, a mark must be included to indicate where each program ends

so that execution does not continue from one program to another. This is done by including an END verb as the last statement in

the program.

Examples

10 PRINT "HELLO"
20 END
30 PRINT "GOODBYE"

40 END

With these programs in memory a 'RUN 10' prints 'HELLO', but not 'GOODBYE'. 'RUN 30' prints

'GOODBYE'.

130

FOR numeric variable = expression 1 TO expression 2

2 FOR numeric variable = expression 1 TO expression 2

STEP expression 3

Abbreviations: F. and FO.; STE.

See also: NEXT

Purpose

The FOR verb is used in combination with the NEXT verb to repeat a series of operations a specified number of times.

Use

The FOR and the NEXT verbs are used in pairs to enclose a group of statements which are to be repeated. The first time this

group of statements is executed the loop variable (the variable named immediately following the FOR) has the value of expression

1.

When execution reaches the NEXT verb, this value is tested against expression 2. If the value of the loop variable is less than or

equal to expression 2, the loop variable is increased by the step size and the enclosed group of statements is executed again, starting

with the statement following the FOR. In the first form, the step size is 1; in the second form, the step size is given by expression

3. If the value of the loop variable is greater than expression 2, execution continues with the statment which immediately follows

the NEXT. Because the comparison is made at the end, the statements within a FOR/NEXT pair are always executed at least once.

Expression and expression 2 may have any value in the numeric range. When expression 1 and expression 2 are compared, only

1~1

-·-

the integer part is used. Expression 3 must be an integer in the range of -32768 to 32767; it may not be zero.

The loop variable may be used within the group of statements, for example as an index to an array, but care should be taken in

changing the value of the loop variable.

Programs should be written so that they never jump from outside a FOR/NEXT pair to a statement within a FOR/NEXT pair.

Similarly, programs must never leave a FOR/NEXT pair by jumping out. Always exit a FOR/NEXT loop via the NEXT statement.

To do this, set the loop variable to a value higher than expression 2.

The group of statements enclosed by a FOR/NEXT pair can include another pair of FOR/NEXT statements which use a different

loop variable, as long as the enclosed pair is completely enclosed: i.e., if a FOR statement is included in the group, the matching

NEXT must also be included. FOR/NEXT pairs may be "nested" up to five levels deep.

132

Examples

10 FOR I= 1 TO 5

20 PRINTI

30 NEXT I

This group of statements prints the numbers 1, 2, 3, 4, 5.

40 FOR N = 10 TO 0 STEP_J-1 This group of statements counts down 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.
50 PRINT N
60 NEXT N

70 FOR N = 1 TO 10
80 X = 1
90 FOR F = 1 TO N

100 X = X * F
110 NEXT F

120 PRINT X

130 NEXT N

This group of statements computes and prints N factorial for the numbers from 1 to 10.

133

1 GOSUB expression

Abbreviations: GOS., GOSUB.

See also: GOTO, ON ... GOSUB, ON ... GOTO, RETURN

Purpose

The GOSUB verb is used to execute a BASIC subroutine.

Use

When you wish to execute the same group of statments several time in the course of a program, or use a previously written set of

statements in several programs, it is convenient to use the BASIC capability for subroutines using the GOSUB and RETURN verbs.

The group of statements is included in the program at some location where they are not reached in the normal sequence of execu­

tion. A frequent location is following the END statement which marks the end of the main program. At those locations in the

main body of the program, where subroutines are to be executed, include a GOSUB statement with an expression which indicates

the starting line number of the subroutine. The last line of the subroutine must be a RETURN. When GOSUB is executed, the

PC-3 Pocket Computer transfers control to the indicated line number and processes the statements until a RETURN is reached.

Control is then transferred back to the statement following the GOSUB.

A subroutine may include a GOSUB. Subroutines may be "nested" in this fashion up to 10 levels deep.

The expression in a GOSUB statement may not include a comma, e.g., 'A(1,2)' cannot be used. Since there is an ON ... GOSUB

structure for choosing different subroutines at given locations in the program, the expression usually consists of just the desired line

134

number. When a numeric expression is used, it must evaluate to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

EXAMPLES

10 GOSUB 100
20 END
100 PRINT "HELLO"
110 RETURN

When this program is run it prints the word 'HELLO' one time.

1 GOTO expression

Abbreviations: G., GO., GOT.

See also: GOSUB, ON ... GOSUB, ON ... GOTO

Purpose

The GOTO verb is used to transfer control to a specified line number.

Use
The GOTO verb transfers control from one location in a BASIC program to another location. Unlike the GOSUB verb, GOTO

does not "remember" the location from which the transfer occurred.

The expression in a GOTO statement may not include a comma, e.g., 'A(1,2)' cannot be used. Since there is an ON ... GOTO

structure for choosing different destinations at given locations in the program, the expression usually consists of just the desired

line number. When a numeric expression is used, it must evaluate to a valid line number, i.e., 1 to 999, or an ERROR 4 will occur.

Well-designed programs usually flow simply from beginning to end, except for subroutines executed during the program. There•

fore, the principal use of the GOTO verb is as a part of an IF ... TH EN statement.

136

Examples

10 INPUT A$ This program prints 'YES' if a 'Y' is entered and prints 'NO' if anything else is entered.
20 IF A$= "Y" THEN GOTO 50

30 PRINT "NO"

40 GOTO 60
50 PRINT "YES"

60 END

137

1 GRAD

Abbreviations: GR., GRA.

See also: DEGREE and RADIAN

Purpose

The GRAD verb is used to change the form of angular values to gradient form.

Use

The PC-3 Pocket Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms

are used in specifying the arguments to the SIN, COS, and TAN functions and in returning the rusults from the ASN, ACS, and

ATN functions.

The GRAD function changes the form for all angular values to gradient form until a DEGREE or RADIAN verb is used. Gradient

form represents angular measurement in terms of percent gradient, i.e., a 45° angle is a 50% gradient.

Examples

10 GRAD
20 X = ASN 1 X now has a value of 100, i.e., a 100% gradient, the Arcsine of 1.

138

IF condition TH EN statement

2 IF condition statement

Abbreviations: none for IF, T., TH., THE.

Purpose

The IF ... TH EN verb pair is used to execute or not execute a statement, depending on conditions at the ti me the program is run.

Use

In the normal running of a BASIC program, statements are executed in the sequence in which they occur. The IF ... THEN

verb pair allows decisions to be made during execution so that a given statement is executed only when desired. When the

condition part of the IF statement is true, the statement is executed; when it is False, the statement is skipped.

The condition part of the IF statement can be any relational expression as described in Chapter 4. It is also possible to use a

numeric expression as a condition, although the intent of the statement will be less clear. Any expression which evaluates to

zero or a negative number is considered False; any which evaluates to a positive number is considered True.

The statement which follows the THEN may be any BASIC statement, including another IF ... THEN. If it is a LET statement,

the LET verb itself must appear. Unless the statement is an END, GOTO, or ON ... GOTO, the statement following the IF ...

THEN statement is the next one executed, regardless of whether or not the condition is True.

The two forms of the IF statement are identical in action, but the first form is clearer.

139

Examples

11J INPUT "CONTINUE?"; A$
21J IF A$= "YES" THEN GOTO 10
31J IF A$= "NO" THEN GOTO 60
40 PRINT "YES OR NO, PLEASE"
50 GOTO 10
60 END

Note:

This program continues to ask 'CONTINUE?' as long as 'YES' is entered; it stops if

'NO' is entered, and complains otherwise.

This unit is capable of calculation for a mantissa of up to 12 digits. To increase accuracy, however, the mantissa is calculated in­

side the unit up to 12 digits, the result of which is rounded to the 10th digit for display. For example, 5/9 and 5/9 * 9 are

calculated as follows:

5/9 --+ 5.55555555555E-0 l

L_ This is rounded to the 10th digit.

Display --+ 5.555555556E-01

5/9 * 9 --+ 4.99999999999E00

L_ Th is is rounded to the 10th digit.

Display --+ 5.

Thus, calculations are carried out for mantissas of up to 12 digits. This may cause a difference in the results of calculations when

performed in succession and independently.

140

[Example 1] 3 2
- 9 =

Successive cal cu lat ion:

Independent calculation: 3 (SHIFT) 3 2 (ENTER)

b 9 (ENTER)

9 (ENTER) ➔ -9.E-11

➔ 9.

➔ 0.

Even in the IF statement, this difference may cause the program not to work as planned for any successive calculations.

[Example 2] 10 INPUT A

20 IF A" 2 > = 9 THEN 50

With A = 3, 3 " 2 results in 8.99999999991 E 00, making an IF statement unformulated.

In this case, reprogram the calculation by using variables so that it is independent, as follows:

10 INPUT A
15 B=A"2
20 IF B>= 9 THEN 50

The result of A" 2 is substituted for a variable, which is used to formulate con­

ditional expression.

Power calculations are based on log x and ,ox, thus tending to cause a difference in the results from those calculated inside

the computer.

A" B--+ 10B logA

• When the A is negative, B must be an integer.

141

1 INPUT input list

Where: input list is:

or:

and: input group is:

or:

or:

and: var list is:

or:

and: prompt is:

Abbreviations: I., IN., INP., INPU.

See also: INPUT#, READ

Purpose

input group

input group, input list

var I ist

prompt, var list

prompt; var list

variable

variable , var I ist

any string constant

The INPUT verb is used to enter one or more values from the keyboard.

Use

When you want to enter different values each time a program is run, use the INPUT verb to enter these values from the keyboard.

In its simplest form, the INPUT statement does not include a prompt string; instead, a question mark is displayed on the left edge

of the display with the cursor next to it. A value is then entered, followed by the (ENTER) key. This value is assigned to the first

142

variable in the list. If other variables are included in the same INPUT statement, this process is repeated until the list is exhausted.

If a prompt is included in the INPUT statement, the process is exactly the same except that, instead of the question mark, the

prompt string is displayed at the left edge of the display. If the prompt string is followed by a semicolon, the cursor is positioned

immediately following the prompt. If the prompt is followed by a comma, the prompt is displayed; then, when a key is pressed,

the display is cleared and the first character of the input is displayed at the left edge.

When a prompt is specified and there is more than one variable in the list following it, the second and succeeding variables are

prompted with the question mark. If a second prompt is included in the list, it is displayed for the variable which immediately

follows it.

If alphabetic characters are entered for a numeric variable, the variable is assigned a value of zero. if the (ENTER) key is pressed

and no input is provided, the variable retains the value it had before the INPUT statement.

Examples

10 INPUT A Clears the display and puts a question mark at the left edge.

20 INPUT "A="; A Displays "A=" and then displays the input data continuously.

30 INPUT "A=", A Displays 'A='

When the data is input, "A=" disappears and then the data is displayed.

40 INPUT "X =? " ; X, "Y =?" ; Y Displays 'X = ?' and waits for first input. After (ENTER) is pressed, display is cleared

and 'Y = ?' is displayed at left edge.

143

1 INPUT #
2 INPUT # "filename"

3 INPUT # var list

4 INPUT # "filename"; var list

where: var list is: variable

or: variable, var list

Abbreviations: I.#, IN.#, INP. #, INPU. L

See also: INPUT, PRINT#, READ

Purpose

The INPUT# verb is used to enter one or more values from the cassette tape.

Use

PRINT# saves the values of variables on tape. They can then be read back into the same or another program using the INPUT#

verb.

With the first form, the values are read from the tape and assigned to the 26 preallocated storage locations. They can be used by

referring to variables A~ Z and A$~ Z$, as appropriate.

With the second form, the tape is searched for the indicated filename and the variables are loaded, as in the first form.

144

With the third form, variables are read from the tape, starting at the current location, and loaded into the variables in the order in

which they appear in the variable list. If there are not enough values on the tape for the number of variables in the list, then zero

or NUL values are assigned to the remainder.

With the fourth form, the tape is searched for the indicated filename and the variables are loaded from the values saved in that file.

There is a special variable form which may be used in the variable list. It looks like an array variable except that an asterisk is

enclosed in the parentheses, e.g., B(*) or F$(*). This form causes all values of the indicated variable to be restored from the tape,

including the simple variable of the same name; i.e., B(*) restores B and B((/)), B(1), 8(2), etc., for as many values as were original­

ly stored. You may not read a single element of an array.

Examples

10 INPUT# A,B,C,
20 INPUT # "FIL2"; D, E, F
30 INPUT # "FIL3"; G(*)

NOTES:

Reads three values from the current position of the tape.

Searches the tape for the file' FI L2' and reads in three values.

Searches the tape for the file 'FIL3' and reads in G and as many values of G() as are

available.

1. When the prerecorded data on tape is transferred to a variable, the data and variable should be coincident in shape (numerical

or string variable), size, and length. An error (ERROR 8) will result unless they are coincident in size and length. No error

will occur when they are not coincident in shape. In this case, however, the transfer of incorrect data may result when the

numerical data is transferred to a string variable or the string data to a numerical variable. Therefore, the data and variable should

also be coincident in shape.

2. The data transfer to variables in the fixed variables and/or in the shape of A () terminates when the prerecorded data on tape

is out, or when the Computer memory is filled to capacity.
145

LET variable= expression

2 variable = expression

Abbreviations: LE.

Purpose

The LET verb is used to assign a value to a variable.

Use

The LET verb assigns the value of the expression to the designated variable. The type of the expression must match that of the

variable, i.e., only numeric expressions can be assigned to numeric variables and only string expressions can be assigned to string

variables. In order to convert from one type to the other, one of the explicit type conversion functions, STR$ or VAL, must be

used.

The LET verb may be omitted in all LET statements except those which appear in the THEN clause of an IF ... THEN state•

ment. In this one case, the LET verb must be used.

Examples

10 I= 10
20 A= 5*1
30 X$ = STR$ (A)

40 IFI > 10 THEN LET Y$ = X$+".00"

Assigns the value 10 to I.
Assigns the value 50 to A.
Assigns the value '50' to X$.

Assigns the value '50.00' to Y$.

146

1 LPR INT print expr

2 LPR INT print expr, print expr

3 LPRINT print list

Where: print list

and: print expr

is: print expr

or: print expr; print list

is: expression

or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: LP., LPR., LPRI., LPRIN.

See also: PAUSE, PRINT, USINT, and WAIT

Purpose
The LPRINT verb is used to print information on the Printer of the optional PC-3 Printer/Cassette Interface.

Use
The LPRINT verb is used to print prompting information, results of calculations, etc. The first form of the LPRINT statement

prints a single value. If the expression is numeric, the value will be printed at the far right edge of the paper. If it is a string

expression, the print is made starting at the far left.

147

With the second form of the LPRINT statement, the paper is divided into two 12-character halves and the two values are printed

in each half according to the same rules as above.

With the third form, the print always starts at the left edge, and each value is printed immediately following the previous value

from left to right with no intervening space.

It is possible to cause PRINT statements to work as LPRINT statements. See the PRINT verb for details.

If an LPR INT statement contains more than 24 characters, the first 24 are printed on one line, the next 24 on the next line, and

so forth.

Unlike PRINT, there is no halt or wait after execution of an LPRINT statement as there is with PRINT.

Examples

10 A=10: 8=20: X$="ABCDEF"
21,J LPRINT A

30 LPRINT X$
41,J LPRINT A, B

50 LPR INT A; B; X$

Paper

148

ABCDEF

10.
10. 20. ABCDEF

10.

20.

1 NEXT numeric variable

Abbreviations: N., NE., NEX.

See also: FOR

Purpose

The NEXT verb is used to mark the end of a group of statements which are being repeated in a FOR/NEXT loop.

Use
The use of the NEXT verb is generally described under FOR. The numeric variable in a NEXT statement must match the numeric
variable in the corresponding FOR.

Examples

10 FOR I= 1 TO 10
20 PRINT I
30 NEXT I

Prints the numbers from 1 to 10.

149

1 ON expression GOSUB expression list

Where: expression list is: expression

or: expression , expression I ist

Abbreviations: 0., GOS., GOSU.

See also: GOSUB, GOTO, ON ... GOTO

Purpose
The ON ... GOSUB verb is used to execute one of a set of subroutines, depending on the value of a control expression.

Use
When the ON ... GOSUB verb is executed, the expression between ON and GOSUB is evaluated and reduced to an integer. If the

value of the integer is 1, the first subroutine in the list is executed as in a normal GOSUB. If the expression is 2, the second

subroutine in the list is executed, and so forth. After the RETURN from the subroutine, execution proceeds with the statement

which follows the ON ... GOSUB.

If the expression is zero, negative, or larger than the number of subroutines provided in the list, no subroutine is executed and

execution proceeds with the next line of the program.

NOTE: Commas may not be used in the expressions following the GOSUB. The PC-3 Computer cannot distinguish between

commas in expressions and commas between expressions.

150

Examples

10 INPUT A

20 ON A GOSUB 100,200,300
30 END

100 PRINT "FIRST"
110 RETURN

200 PRINT "SECOND"
210 RETURN

300 PRINT "THIRD"
310 RETURN

An input of 1 prints "FIRST"; 2 prints "SECOND"; 3 prints "THIRD". Any other

input does not produce any print.

151

1 ON expression GOTO expression list

Where: expression I ist is: expression

or: expression , expression I ist

Abbreviations: 0., G., GO., GOT.

See also: GOSUB, GOTO, ON ... GOSUB

Purpose

The ON ... GOTO verb is used to transfer control to one of a set of locations, depending on the value of a control expression.

Use
When the ON ... GOTO verb is executed, the expression between ON and GOTO is evaluated and reduced to an integer. If the

value of the integer is 1, control is transferred to the first location in the list. If the expression is 2, control is transferred to the

second location in the list, and so forth.

If the expression is zero, negative, or larger than the number of locations provided in the list, execution proceeds with the next

line of the program.

NOTE: Commas may not be used in the expressions following the GOTO. The Computer can not distinguish between commas

in expressions and commas between expressions.

152

Examples

10 INPUT A

20 ON A GOTO 100, 200, 300
30 GOTO 900

100 PRINT "FIRST"

110 GOTO 900

200 PRINT "SECOND"

210 GOTO 900
300 PRINT "THIRD"

310 GOTO 900
900 END

An input of 1 prints "FIRST", 2 prints "SECOND"; 3 prints "THIRD". Any other

input does not produce any print.

153

1 PAUSE print expr

2 PAUSE print expr , print expr

3 PAUSE print list

Where: print I ist

and: print expr

is: print expr

or: print expr; print list

is: expression

or: USING clause; expression

The USING clause is described separately under USING

Abbreviations: PA., PAU., PAUS.

See also: LPRINT, PRINT, USING, and WAIT

Purpose

The PAUSE verb is used to print information on the display for a short period.

Use
The PAUSE verb is used to display prompting information, results of calculations, etc. The operation of PAUSE is identical to

PRINT except that, after PAUSE, the PC-3 Computer waits for a short preset interval of about .85 seconds, and then continues

execution of the program without waiting for the ENTER key or the WAIT interval.

154

The first form of the PAUSE statement displays a single value. If the expression is numeric, the value is printed at the far right

end of the display. If it is a string expression, the value is printed at the far left end of the display.

With the second form of the PAUSE statement, the display is divided into two 12-character halves. The two values are displayed

in each half, according to the same rules as above.

With the third form, the display starts at the left edge and each value is displayed immediately following the previous value from

left to right, with no intervening space.

PAUSE statements are not affected by the PR INT=LPR INT statement (see PR INT).

While it is possible to write PAUSE statements which would display more than 24 characters, only the leftmost 24 appear in the

display. There is no way to see the other characters.

Examples

10 A= 10: B = 20: X$= "ABCDEF" Display

20 PAUSE A 10.

30 PAUSE X$ ABCDEF

40 PAUSE A, B 10. 20.

50 PAUSE A; B; X$ 10. 20. ABCDEF

155

1 PRINT print expr

2 PRINT print expr , print expr

3 PRINT print list

4 PR INT= LPR INT

5 PR INT= PR INT

Where: print list is: print expr

or: print expr; print list

and: print expr is: expression

or: USING clause ; expression

The USING clause is described separately under USING

Abbreviations: P., PR., PR I., PRIN.

See also: LPRINT, PAUSE, USING, and WAIT

Purpose
The PRINT verb is used to print information on the display or Printer of the PC-3 Printer/Cassette Interface.

Use
The PRINT verb is used to display prompting information, results of calculations, etc. The first form of the PRINT statement

displays a single value. If the expression is numeric, the value is printed at the far right end of the display. If it is a string expres-

156

sion, the value is printed at the far left end of the display.

With the second form of the PRINT statement, the display is divided into two 12-characters halves and the two values are displayed

in each half, according to the same rules as above.

With the third form, the display starts at the left edge and each value is displayed immediately following the previous value from

left to right, with no intervening space.

The fourth and fifth forms of the PR INT statement do no printing. The fourth form causes all PR INT statements which follow it

in the program to be treated as if they were LPRINT statements. The fifth form resets the fourth condition so that the PRINT

statements will again work with the display.

While it is possible to write PR INT statements which would display more than 24 characters, only the leftmost 24 appear in the

display. There is no way to see the other characters.

Examples
10 A= 10: B = 20: X$ = "ABCDEF" Display

20 PRINT A 10.

30 PRINT X$ ABCDEF

40 PRINT A, B 10. 20.

50 PRINT A; B; X$ 10. 20. ABCDEF

157

1 PRINT #

2 PRINT # "filename"

3 PRINT # "filename"

4 PRINT # "filename" ; var list

Where: var list is: variable

or: variable , var I ist

Abbreviations: P. #.PR.#, PRI. #, PRIN. #

See also: INPUT#, PRINT, READ

Purpose

The PR INT# verb is used to store one or more values on the cassette tape.

Use

Using PRINT#, the values of variables can be saved on tape. These can then be read back into the same or another program using

the INPUT# verb.

With the first form, the values of the 26 preallocated storage locations (variables A~ Zand A$~ Z$) are stored on the tape.

With the second form, the 26 preallocated storage locations are stored on the tape under the designated filename.

158

With the third form, the indicated variables are stored on the tape, starting at the current location.

With the fourth form, indicated variables are stored on the tape under the designated filename.

There is a special variable form which may be used in the variable list. It looks like an array variable, except that an asterisk is

enclosed in the parentheses, e.g., B(*l or F$(*). This form causes all values of the indicated variable to be saved on the tape,

including the simple variable of the same name, i.e., B(*) saves Band B(0), B(1), B(2), etc., for as many values as are in the array.

You may not save a single element of an array.

Examples

10 PRINT# A, B, C
20 PRINT# "FIL2"; D, E, F
30 PRINT# "FIL3"; G(*)

Note:

Saves three values on the tape at the current position.

Saves three values on the tape under the filename "FI L2".

Saves G and all values of G() on the tape under the filename "Fl L3".

A variable above A(27), or a dimensional variable, must be secured into the program/data area before the PRINT# command is

executed. If the variable is not designated before the PRINT# command, an error (ERROR 3) will result.

159

1 RADIAN

Abbreviations: RAD., RADI., RADIA.

See also: DEGREE and GRAD

Purpose
The RADIAN verb is used to change the form of angular values to radian form.

Use
The PC-3 Pocket Computer has three forms for representing angular values - decimal degrees, radians, and gradient. These forms

are used in specifying the arguments to the SIN, COS, and TAN functions and in returning the results from the ASN, ACS, and

A TN functions.

The RADIAN function changes the form for all angular values to radian form until a DEGREE or GRAD verb is used. Radian form

represents angles in terms of the length of the arc with repect to a radius, i.e., 360° is 2PI radians, since the circumference of a

circle is 2 Pl times the radius.

Examples

10 RADIAN
20 X = ASN 1 X now has a value of 1.570796327 or P 1/2, the Arcsine of 1.

160

1 RANDOM

Abbreviations: RA., RAN., RAND., RANDO.

Purpose

The RANDOM verb is used to reset the seed for random number generation.

Use

When random numbers are generated, using the RND function, the PC-3 Computer begins with a predetermined "seed" or starting

number. The RANDOM verb resets this seed to a new randomly-determined value.

The starting seed will be the same each time the PC-3 Computer is turned on, so the sequence of random numbers generated with

RND is the same each time, unless the seed is changed. This is very convenient during the development of a program, because it

means that the behavior of the program should be the same each time it is run, even though it includes a RND function. When you

want the numbers, to be truly random, the RANDOM statement can be used to make the seed itself random.

Examples

10 RANDOM
20 X = RND 1

When run from line 20, the value of X is based on the standard seed. When run from line 10, a new seed is

used.

161

1 READ variable list

Where: variable list is: variable

or: variable , variable list

Abbreviations: REA.

Sea also: DATA, RESTORE

Purpose

The READ verb is used to read values from a DAT A statement and assign them to variables.

Use

When assigning initial values to an array, it is convenient to list the values in a DATA statement and use a READ statement in a

FOR ... NEXT loop to load the values into the array. When the first READ isexecuted,thefirstvalueinthefirstDATAstate­

ment in returned. Succeeding R EADs use succeeding values in the sequential order in which they appear in the program, regard­

less of how many values are listed in each DATA statement or how many DATA statements are used.

If desired, the values in a DAT A statement can be read a second time by using the RESTORE statement.

162

Examples
10 DIM 8(10)

20 FOR I= 1 TO 10

30 READ B(I)

40 NEXT I

Sets up an array

Loads the values from the DATA statement into 8() - 8(1) is 1, 8(2) is 2, 8(3) is 3, etc.

50 DATA 1, 2, 3, 4, 5, 6

60 DATA 7, 8, 9, 10

1 REM remark

Abbreviations: none

Purpose

The REM verb is used to include comments in a program.

Use

Often it is useful to include explanatory comments in a program. These can provide titles, names of authors, dates of last

modification, usage notes, reminders about algorithms used, etc. These comments are included by means of the REM statement.

The REM statement has no effect on the program execution and can be included anywhere in the program. Everything following

the REM verb in that line is treated as a comment, so the REM verb must be the last statement in a line when multiple statement

lines are used.

Examples

10 REM THIS LINE HAS NO EFFECT.

164

RESTORE
2 RESTORE expression

Abbreviations: RES., REST., RESTO., RESTOR.

See also: DATA, READ

Purpose

The RESTORE verb is used to reread values in a DATA statement or to change the order in which these values are read.

Use

In the regular use of the READ verb, the PC-3 Pocket Computer begins reading with the first value in a DATA statement and pro­

ceeds sequentially through the remaining values. The first form of the RESTORE statement resets the pointer to the first value of

the first DATA statement, so that it can be read again. The second form of the RESTORE statement resets the pointer to the first

value of the first DATA statement whose line number is greater than the value of the expression.

165

Examples

10 DIM 8(10) Set up an array.

20 FOR I= 1 TO 10

30 READ B(I) Assigns the value 10 to each of the elements of B().

40 RESTORE
50 NEXT I

60 DATA 10

166

1 RETURN

Abbreviations: RE., RET., RETU., RETUR.

See also: GOSUB, ON ... GOSUB

Purpose

The RETURN verb is used at the end of a subroutine to return control to the statement following the originating GOSUB.

Use

A subroutine may have more than one RETURN statement, but the first one executed terminates the execution of the subroutine.

The next statement executed will be the one following the GOSUB or ON ... GOSUB which calls the subroutine. If a RETURN is

executed without a GOSUB, an Error 5 will occur.

Examples

10 GOSUB 100 When run, th is program prints the word "HELLO" one time.

20 END
100 PRINT "HELLO"
110 RETURN

167

1 STOP

Abbreviations: S., ST., STO.,

See also: END, CONT command

Purpose

The STOP verb is used to halt execution of a program for diagnostic purposes.

Use

When the STOP verb is encountered in program execution, the PC-3 Computer execution halts and a message is displayed, such as

'BREAK IN 200' where 200 is the number of the line containing the STOP. STOP is used during the development of a program to

check the flow of the program or examine the state of variables. Execution may be restarted using the CONT command. Pressing

the Left Arrow or Right Arrow keys after a STOP restores the display to its condition prior to the STOP.

Examples

10 STOP Causes "BREAK IN 10" to appear in the display.

168

1 TROFF

Abbreviations: TROF.

See also: TRON

Purpose

The TROFF verb is used to cancel the trace mode.

Use

Execution of the TROFF verb restores normal execution of the program.

Examples

10 TRON
20 FOR I = 1 TO 3

30 NEXTI
40 TROFF

When run, this program displays the line numbers 10, 20, 30, 30, 30 and 40.

169

1 TRON

Abbreviations: TR., TRO.

See also: TROFF

Purpose

The TRON verb is used to initiate the trace mode.

Use

The trace mode provides assistance in debugging programs. When the trace mode is on, the line number of each statement is dis­

played after each statement is executed. The PC-3 Computer then halts and waits for the Down Arrow key to be pressed before

moving on to the next statement. The Up Arrow key may be pressed to see the statement which has just been executed. The trace

mode continues until a TROFF verb is executed.

Examples

10 TRON
20 FOR I = 1 TO 3

30 NEXT I

40 TROFF

When run, this program displays the line numbers 10, 20, 30, 30, 30 and 40.

170

USING

2 USING "editing specification"

Abbreviations: U., US., USI., USIN.

See also: LPRINT, PAUSE, PRINT

Further guide to the use of USING is provided in Appendix C

Purpose
The USING verb is used to control the format of displayed or printed output.

Use
The USING verb can be used by itself or as a clause within a LPRINT, PAUSE, or PRINT statement. The USING verb establishes

a specified format for all output which follows unti I changed by another USING verb.

The editing specification of the USING verb consists of a quoted string composed of some combination of the fol lowing editing

characters:

Right-justified numeric field character.

Decimal point.

" Used to indicate that numbers should be displayed in scientific notation.

& Left-justified alphanumeric field.

171

For example, "####" is an editing specification for a right-justified numeric field with room for 3 digits and the sign. In numeric

fields, a location must be included for the sign, even if it will always be positive.

Editing specifications may include more than one field. For example, "####&&&&" could be used to print a numeric and a

character field next to each other.

If the editing specifications is missing, as in format 1, special formatting is turned off and the built-in display rules pertain.

Examples

10 A= 125: X$ = "ABCDEF"

20 PRINT USING "##.##/"''"; A

30 PRINT USING "&&&&&&&&"; X$

40 PRINT USING "####&&&";A;X$

Display

1.25E 02

ABCDEF

125ABC

172

1 WAIT

2 WAIT expression

Abbreviations: W., WA., WAI.

See also: PAUSE, PRINT

Purpose

The WAIT verb is used to control the length of time that displayed information is shown before program execution continues.

Use
In normal execution, the PC-3 Pocket Computer halts execution after a PRINT command until the (ENTER) key is pressed. The

WAIT command causes the PC-3 Computer to display for a specified interval, and then proceed automatically (similar to the

PAUSE verb). The expression which follows the WAIT verb determines the length of the interval. The interval may be set to any

value from 0 to 65535. Each increment is about one sixty-fourth of a second. WAIT 0 is too fast to be read reasonably; WAIT

65535 is about 17 minutes. WAIT with no following expression resets the PC-3 Computer to the original condition of waiting

until the (ENTER) key is pressed.

Examples

10 WAIT 64 Causes PR I NT to wait about 1 second.

173

FUNCTIONS
Pseudovariables

Pseudovariables are a group of functions which take no argument and are used like simple variables wherever required.

1 INKEY$

INKEY$ is a string pseudovariable which has the value of the last key pressed on the keyboard. Enter, CL, CA, SHIFT, DEF,

Up Arrow, Down Arrow, Left Arrow, and Right Arrow all have a value of NUL. INKEY$ is used to respond to the pressing of

individual keys without waiting for the ENTER key to end the input. For example, these statements "wait" for a non-NUL key to

be pressed:

10 A$= INKEY$

20 B = ASC INKEY$
30 IF B = 0 THEN GOTO 10
40 IF B

Lines 40 and beyond contain tests for the key and the actions to be taken. On first executing the program, the value of INKEY$

is NU L, since the last key pressed was (ENTER) . If IN KEY$ is used following PR I NT or PAUSE, the contents of the display are

read instead of a key pass.

174

1 MEM

MEM is a numeric pseudovariable which has the value of the number of characters of program memory remaining. The available

program memory will be the total memory, less the space consumed by programs and array variables. MEM may also be used as a

command. Immediately following reset, MEM has a value of 1438.

1 Pl

Pl is a numeric pseudovariable which has the value of Pl. It is identical to the use of the special Pl character (1r) on the keyboard.

Like other numbers, the value of Pl is kept to 10--digit accuracy (3.141592654).

Numeric Functions
Numeric functions are a group of mathematical operations which take a single numeric value and return a numeric value. They

include trigonometric functions, logarithmic functions, and functions which operate on the integer and sign parts of a number.

Many dialects of BASIC require that the argument to a function be enclosed in parentheses. The PC-3 Pocket Computer does not

require these parentheses, except when it is necessary to indicate what part of a more complex expression is to be included in the

argument.

175

LOG 100 + 100 will be interpreted as:

(LOG 100) + 100 not LOG (100 + 100).

If the same function is to be used two or more times in succession, parentheses must be used:

LOG (LOG 100) not LOG LOG 100

1 ABS numeric expression

ABS is a numeric function which returns the absolute value of the numeric argument. The absolute value is the value of a number

without regard to its sign. ABS -10 is 10.

1 ACS numeric expression

ACS is a numeric function which returns the arccosine of the numeric argument. The arccosine is the angle whose cosine is equal to

the expression. The value returned depends on whether the PC-3 Computer is in decimal degree, radian, or gradient mode for

angles. ACS .5 is 60 in the decimal degree mode.

176

1 ASN numeric expression

ASN is a numeric function which returns the arcsine of the numeric argument. The arcsine is the angle whose sine is equal to the

expression. The value returned depends on whether the PC-3 Computer is in decimal degree, radian, or gradient mode for angles.

ASN .5 is 3(3 in the decimal degree mode.

1 ATN numeric expression

ATN is a numeric function which returns the arctangent of the numeric argument. The arctangent is the angle whose tangent is

equal to the expression. The value returned depends on whether the PC-3 Pocket Computer is in decimal degree, radian, or gradient

mode for angles. ATN 1. is 45 in the decimal degree mode.

1 COS numeric expression

177

COS is a numeric function which returns the cosine of the angle argument. The value returned depends on whether the PC-3
Computer is in decimal degree, radian, or gradient mode for angles. COS 60 is .5 in the decimal degree mode.

1 DEG numeric expression

The DEG function coverts an angle argument in OMS (Degree, Minute, Second) format to DEG (Decimal Degree) form. In OMS

format, the integer portion of the number represents the degrees, the first and second digits of the decimal represent the minutes,

the third and forth digits of the decimal represent the seconds, and any further digits represent decimal seconds. For example,

55° 10' 44.5" is represented as 55.10445. In DEG format, the integer portion is degrees and the decimal is decimal degrees. DEG

55.10445 is 55.17902778.

1 DMS numeric expression

OMS is a numeric function which converts an angle argument is DEG format to OMS format (see DEG). OMS 55.17902778 is

55.10445.

178

1 EXP numeric expression

EXP is a numeric function which returns the value of e (2.718281828 - the base of the natural logarithms) raised to the value of

the numeric argument. EXP 1 is 2.718281828.

1 INT numeric expression

I NT is a numeric function which returns the integer part of its numeric argument. INT Pl is 3.

1 LOG numeric expression

LOG is a numeric function which returns the logarithm to the base 10 of its numeric argument. LOG 100 is 2.

1 LN numeric expression

179

LN is a numeric function which retuns the logarithm to the base e (2.718281828) of its numeric argument. LN 100 is

4.6fJ517fJ186.

1 RND numeric expression

RND is a numeric function which generates random numbers. If the value of the argument is less than one but greater than or equal

to zero, the random number is less than one and greater than or equal to zero. If the argument is an integer greater than or equal

to 1, the result is a random number greater than or equal to 1 and less than or equal to the argument. If the argument is greater

than 1 and not an integer, the result is a random number greater than or equal to 1 and less than or equal to the smallest integer

which is larger than the argument:

Argument

.5
2

2.5

Lower Bound

0

Result

Upper Bound

<1
2
3

The same sequence of random numbers is normally generated because the same "seed" is used each time the PC-3 Pocket Com­

puter is turned on. To randomize the seed, see the RANDOM verb.

180

1 SGN numeric expression

SGN is a numeric function which returns a value based on the sign of the argument. If the argument is positive, the result is 1; if

the argument is zero, the result is 0; if the argument is negative, the result is -1. SGN -5 is -1.

1 SIN numeric expression

SIN is a numeric function which returns the sine of the angle argument. The value returned depends on whether the PC-3Com­

puter is in decimal degree, radian, or gradient mode for angles. SIN 30 is .5

1 SOR numeric expression

SOR is a numeric function which returns the square root of its argument. It is identical to the use of the special square root symbol

(y) on the keyboard. SOR 4 is 2.

rn1

1 TAN numeric expression

TAN is a numeric function which returns the tangent of its angle argument. The value returned depends on whether the PC-3
Computer is in decimal degree, radian, or gradient mode for angles. TAN 45 is 1.

(CALCULATION RANGE)

Functions Dynamic range Functions Dynamic range

-1 x 10100 <x logy< 100

(y =0, x~0: ERROR 2) (Ex.) (;!''0 I ENTER I-+ ERROR 2

(yx) y=0,x>0:0 0 "'5 [ENTER I -+ 0.
Y"'X (-4)"'0.5 I ENTER I-+ ERROR 2

If y < 0 x must be an integer.

s1w 1 x -1 ~x ~ 1 cos- 1 x
TAN- 1 x I X I < 1 X 10100

LNx 1 X 10-99 ~ X < 1 X 10 100

LOGx

EXPx - 1 XlQ
1
00 < X ~ 230.2585092

In TAN x, however, the

SIN X DEG: lxl<1x10 10 following cases are excluded.
DEG: I x I = 90 (2n - 1)

COSx RAD: lxl<_!!_ x10 10
RAD: Ix I=; (2n-1) 180

TANx GRAD: Ix I< J_Q_ x 10 10 GRAD: Ix I= 100 (2n-1)
9

(n: integer)

✓x 0~x<1x10 100

182

• As a rule, the error of functional calculations is less than ±1 at the lowest digit of a displayed numerical value (at the lowest

digit of mantissa in the case of scientific notation system) within the above calculation range.

Note: Power calculation is performed from m logx and ,ox calculations.
Y"X ➔ 1oxlogy

Therefore, there is inevitably a difference, to some extent, from the true value in the computer. This difference does not

usually appear on the display. However, it is accumulated depending on calculation contents, such as continuous calcula­

tions, and may appear on the display.

Example: 16-2"2"2 (ENTER) ➔ 6.E-10

String Functions

String functions are a group of operations used for manipulating strings. Some take a string argument and return a numeric value.

Some take a string argumennt and return a string. Some take a numeric value and return a string. Some take a string argument

and one or two numeric arguments and return a string. Many dialects of BASIC require the argument of a function to be enclosed

in parentheses. The PC-3 does not require these parentheses, except when it is necessary to indicate what part of a more complex

expression is to be included in the argument. String functions with two or three arguments all require the parentheses. For

example, CH R$ 65 + 4 is interpreted as (CH R$ 65) + 4, which is an illegal mixture of string and numeric quantities; CH R$ (65 + 4)

is valid.

183

1 ASC string expression

ASC is a string function which returns the numeric ASCII code value of the first character in its argument. The chart of ASCII

codes and their relationship to characters is given in Appendix B, ASC "A" is 65.

1 CHR$ numeric expression

CH R$ is a string function which returns the character which corresponds to the numeric ASCII code of its argument. The chart

of ASCII codes and their relationship to characters is given in Appendix B. CHR$ 65 is "A".

1 LEFT$ (string expression , numeric expression)

LEFT$ is a string function which returns the leftmost part of the string first argument. The number of characters returned is

determined by the numeric expression. LEFT$ ("ABCDEF", 2) is "AB".

184

1 LEN string expression

LEN is a string function which returns the length of the string argument. LEN "ABCDEF" is 6.

1 MID$ (string expression , num. exp. 1 , num. exp. 2

M 10$ is a string function which returns a middle portion of the string first argument. The first numeric argument indicates the

first character position to be included in the result. The second numeric argument indicates the number of characters that are

to be included. MID$ ("ABCDEF", 2, 3) is "BCD".

1 RIGHT$ string expression, numeric expression

RIGHT$ is a string function which returns the rightmost part of the string first argument. The number of characters returned

is determined by the numeric argument. RIGHT$ ("ABCDEF", 3) is "DEF".

185

1 STR$ numeric expression

STR$ is a string function which returns a string which is the character representation of its numeric argument. It is the reverse

of VAL. STR$ 1.59 is" 1.59".

1 VAL string expression

VAL is a string function which returns the numeric value of its string argument. It is the reverse of STR$. The VAL of a non­

number is zero. Val "1.59" is 1.59.
If the string contains alphanumeric character, any numeric character on the right of the alphanumeric is ignored.

VAL (2 LBS 5 OZ) will return "2".

Space is usually regarded as non-existing. However, if space is included in the exponent portion (after E), any numeric character

on the right of space is ignored.

186

CHAPTER 9 PROGRAMMING EXAMPLES
This chapter presents a series of programming examples whi~ illustrate some of the potential programming capabilites of your

PC-3 Computer. Each example is briefly discussed to indicate the logic and structure of the program and the way in which the

PC-3 Computer is being used. This discussion is not meant to be a complete guide to programming. New programmers should

consult a separate book on how to program.

loan Payments
This program illustrates how the PC-3 Computer can be used to calculate the size of a loan payment and the total cost of the loan.

The program first solicits the amount borrowed, the rate of interest, and the number of months that the loan will run.

It then calculates the loan payment using this formula:

P*(1+1)N*I A = -------
(1 +I) N - 1

Where: A is the monthly mortgage payment

Pis the Principal; the amount borrowed

I is the interest for 1 month expressed as a decimal fraction (i.e., 1% = .01)

N is the number of months

Then the program computes the total cost of the loan over the entire loan period and the total amount of interest.

The program asks for the interest for a whole year because this is the basis usually used to discuss interest.

187

Loan Payment Calculator Program
10: INPUT "PRINCIPAL? "; P

20: INPUT "YEARLY~ INTEREST?"; I
30: I = 1/12
40: I= 1/100

50: INPUT "MONTHS? "; N

60: T = (P*((1 + l)"'N)) *I
70: 8 = ((1 + l)"N)-1
80: A= T/8
90: A= (INT ((A* 100) + .5))/100

100: PRINT "MO. PAYMENT="; A

110: Z = A*N
120: PRINT "TOTAL~COST ="; Z

130: X = Z-P
140: PRINT "TOTAL~INTEREST ="; X

150: INPUT "ANOTHER? "; 0$
160: IF (LEFT$ (0$,1) = "Y") THEN GOTO 10
170: END

Get the amount borrowed

Get the interest for a whole year

Divide by 12 to get the interest for a month

Divide by 100 to turn percent into a decimal fraction

Get number of months

Compute top half of formula
Compute bottom half of formula

Divide top by bottom

Convert to even cents
Display monthly payment amount

Multiply monthly amount times months for total
Display total cost

Subtract principal from total cost to get interest

Print interest

Ask for repeat
Go back to top if first character is 'Y'
Otherwise end

Note: The computation in line 9(/J is a little programming "trick" for rounding off numbers to a desired precision. Multiplying by

1(/J(IJ moves the first two decimal digits to the left of the dec.imal point. Taking the integer part of this with the INT function

throws away any extra decimal digits. .5 is added first so thiit it will round up if the part which is to be thrown away is over .5.

The amount is then divided by 1 (IJ(IJ again to restore its prior scale.

188

Sort writing

When writing programs, you often need to get items into a particular order, i.e., to sort them. Many different sorting techniques

have been developed, each of which is better or worse for particular circumstances. One of the simplest sorting techniques is the

"sort by search". In this technique the program scans an array of unsorted data looking for the largest item. It puts this in the top

element of a new array and goes back to look for the next largest item. It puts this item in the next element of the array, and so

on. Each element selected in the unsorted array is then set to a very small number so it won't be found on the next search.

Sorting Program

10: INPUT "HOW MANY_ ITEMS TO SORT? "; N
20: DIM 0(N), S(N)

30: FOR I= 1 TO N
40: INPUT O (1)
50: NEXT I

60: PAUSE "SORTING"
70: FOR I= 1 TON

80: T = 1
90: FOR J = 1 TO N

100: IF (0 (J) > 0 (T)) THEN LETT= J
110:NEXTJ

120: S (I) = 0 (T)
130: 0 (T) = - 9.999999999IE99

140: NEXT I

Find out how many values this time

Allocate space for an array to hold the data-0 () is for unsorted data, S ()
for sorted

Lines 30-50 are a loop to read in the data

Read in each value

Announce that the sort is starting

Outside loop indexes through S () indicating where the next largest

value is to be put

Arbitrarily set pointer for the largest value to the first element in O (
Loop th rough array of unsorted data

If a larger value is found, change T to point to the largest so far

Put this value in the next element of the sorted array

Set that element in the unsorted array to the smallest possible number so

that it won't be used again

End of loop on sorted array

189

150: BEEP 2
160: PAUSE "DONE SORTING"

170: INPUT "DISPLAY OR PRINTER? "; A$
180: IF (LEFT$ (A$,1) = "P") THEN PRINT= LPRINT

190: FOR I= 1 TON
200: PRINTS (I)

210: NEXT I

220: PRINT= PRINT
230: END

Slot Machine Simulation

Announce that sort is done

Ask where output should go

If printer is selected, set output to printer

Loop through sorted array

Print largest through smallest

Reset to original condition

This program simulates the behavior of a simple slot machine. The model simulated is based on three wheels covered with pictures

of objects. One object from each wheel shows through the window at a time. In this simulation there are three objects which

alternate around each of the three wheels. On each play the wheels are spun and travel freely for a period of time. Then they begin

to slow down and gradually come to a stop. The stopping point of each wheel is random. If the same three objects show in all

three windows at the end of the play, then you win.

Notice that this program has been written so that it is easy for you to modify the number of objects, the speed of play, and the

combinations which produce a win. At the beginning, variables are set to control the speed during the spin (i.e., the amount of

time it takes for each new object to appear in the window). One controls the rate during the initial free-wheeling portion, and

another controls the rate during the slow down period. A third variable is used to control the length of other displays.

Another variable determines the number of objects to be used, Although only three have been used here, it is easy to change this

variable and provide more names in the data list, if you would like to try more. The amount of the win is calculated so that the

190

expected payoff will be slightly less than the expected cost. If desired, it is also easy to add more complex winning rules with

different payoffs. Variables are also set to control the length of the free-wheeling and slow-down periods.

Slot Machine Simulation Program
10: S = 0: F = 10: G = 90: H = 200

20: T = 3: Z = INT (((TA3} - 1)/T}: C = 3*T: B = 6 *T

30: DIM R(3}, 0(3), P$(T) * 8

40: RANDOM

50: FOR I= 1 TO 3
60: D(I} = RND(T}
70: NEXT I

80: FOR I= 1 TOT
90: READ P$(1}

100: NEXT I
110: DATA" ORANGE"," LEMON"," CHERRY"

120:WAIT H
130: PRINT "1$ SLOT MACHINE"
140: WAIT
150: PRINT "PRESS ENTER TO START"

200: REM***START OF TURN***
210: M = 0

Set initial variables - Sis amount of winnings, Fis amount of PRINT
WAIT during first part of spin, G is longest print WAIT in spin, and H

is PRINT WAIT for information massages
T is number of objects, Z is earning from a win, C is length of fast spin,

B is maximum length of slow spin portion
Allocate space for arrays - R () is how many positions each wheel will

turn. D () is number of current objects, p$ () is names of objects
Randomize seed for RND ()

Initialize the object for each "window" to a random value

Read in the names of the objects

Spaces are added to make each 8 characters

Set WAIT for start message
Announce start
Reset WAIT to wait for Enter
Wait for Enter to begin

Initialize M
191

220: FOR I = 1 TO 3
230: R(ll = 8 + RND (Cl
240: IF (R(I) > M) THEN LET M = R(I)
250: NEXT I

260:WAIT F
270: E = (G-F)/(M-Cl

280: FOR A = 1 TO M
290: IF (A> Cl THEN WAIT F + ((A-Cl* El
300: FOR I= 1 TO 3
310: IF (R(l)>0) THEN LET 0(1) = D(ll + 1
320: IF (D(l)>Tl THEN LET D(ll = 1
330: R(I) = R(l}-1
340: NEXT I

350: PRINT P$(O(1l; P$(O(2)l; P$(O(3l
360: NEXT A

370: WAIT H
380: PRINT P$(O(1)l; P$(O(2l); P$(O(3l)
390: W = -1
400: IF (0(11 = 0(21) AND (0(21 = 0(31) THEN LET W = 2
410: IF W<0 THEN PRINT "YOU LOSE"
420: IF W>0 THEN PRINT "YOU~WIN"; 2; "DOLLARS"
430:S =S + W

440: ON (2t SGN (Sll GOTO 450,470,490
450: PRINT ·sq _ _,FARL__youJAVEJOST $"; ABS (S)
460: GOTO 500

Determine random stopping time for each window

Set M to longest stopping time

Reset WAIT to fastest interval

Compute the amount to slow the interval
during each turn of the slow down phase

Loop from 1 to longest stopping time
If in slow-down phase, then slow down rotation by one increment

Loop through each window
If window it still turning, then advance to next object
Cycle back to first object if over top

Reduce count of remaining turns

Show current objects

Reset WAIT to longest interval
Redisplay ending position

Set winnings this turn to expected loss of $1
If all objects are the same, then set to win amount
If loss, then say so
If win, then say so
Add this turn to total winnings

Jump to message depending on sign of winnings

Message for S<O
Go to common end

192

470: PRINT "YOUL_JAREL.__JBREAKINGJVEN"
480: GOTO 500
490: PRINT "Sq ___ _,FARJOUJAVE'----.JWON $"; S

500: INPUT "ANOTHER~ TRY?"; 0$
510: IF (LEFT${0$,1) = "Y") THEN GOTO 200
520: END

Federal Tax Estimator

Message for S = 0
Go to common end
Message for S>O

Ask about another turn
Check first character of answer

This program provides an estimate of United States Federal tax liability. It requests filing status, number of exemptions, salary

income, self-employment income, other income, and amount of itemized deductions. Based on this information, it computes

the taxable income. Next, it reads in the tax table appropriate to the filing status and determines the amount of Federal Income

Tax. If there is self-employment income, the Social Security tax is computed. Any additional tax obligations and credits are

solicited and a total tax liability is calculated.

The method of computing Federal Income Tax is based on "Tax Rate Schedules X, Y and Z". These schedules break down the

income for each filing status into tax brackets. For each tax bracket, there is a tax computation rule of the form: "If income is

over B(I), but not over B(I + 1), then the tax is M(I) plus P (I) percent of the excess over B(I)". The program scans the baseline

values, B(I), for the largest value which is not greater than the income. It determines the appropiate bracket and applies the rule

to compute tax liability.

NOTE: The values included in this program are based on those in the 1982 Declaration of Estimated Tax for Individuals (Form

1040-ES). This program is presented here to illustrate the capabilities of the PC-3 Pocket Computer and is not intended to be an

authoritative basis for any individuals actual tax liability. Individual circumstances and changing laws provide too many

circumstances for a simple program such as this one to be complete. Consult a tax professional if you have questions about your

own tax liability.

193

United States Federal Tax Estimator Program
10: DIM 8(15), M(15), P(15)

20: USING " ######,"

30:WAIT 128
40: PRINT "FILING STATUS:"
50: PRINT "1 = SINGLE"
60: PRINT "2 = MARRIED FILING SEPAR."
70: PRINT "3 = MARRIED FILING JOINT"
80: PRINT "4 = HEAD OF HOUSEHOLD"
90:WAIT

100: INPUT "STATUS? "; F
110: IF ((F<1) OR (F>4)) THEN GOTO 40
120: INPUT "NO. OF EXEMPTIONS? ";E
130: INPUT "EST. SALARY INCOME? "; I
140: INPUT "EST. S.E. INCOME? ";S
150: INPUT "EST. OTHER INCOME? "; 0
160: I = I + S + 0
170: PRINT "TOTAL INCOME="; I

180: INPUT "WILL YOU ITEMIZE?"; Q$
190: IF (LEFT$ (Q$,1) <> "Y") THEN GOTO 270
200: INPUT "EST. TOTAL DEDUCT.?"; D
210: IF ((F = 1) OR (F = 4)) THEN LET D = D-2300
220: IF (F = 2) THEN LET D = D-3400
230: IF (F = 3) THEN LET D = D-1700
240: IF (D<0) THEN LET D = 0
250: I= I-D
260: PRINT "INC. LESS OED.="; I

Allocate arrays - B () is baseline for tax bracket, M () is minimum tax
in bracket, P () is percent within bracket

Set format for all displays

Set WAIT for Status options display
Display options for filing status

Reset WAIT so that Enter is required after each display
Get filing status
Check if valid
Get number of exemptions
Get salary income
Get self-employment income
Get other income
Total the incomes
And display

Ask about itemizing deductions
If not then skip itemizing section
Get total itemized deductions
Subtract standard deduction according to filing status

Minimum deduction is zero
Reduce income by excess over standard
And display

194

270: I = I-(E * 1000)
280: IF (1<0) THEN LET I= 0
290: PRINT "INC. LESS EXMP. ="; I

300: W = 750 + (50 * F)
310: RESTORE W
320: READ L
330: FOR X = 1 TO L
340: READ B(X), M(X), P(X)

350: IF (l>B(X)) THEN LET J = X

360: NEXT X

370: T = M(J) + (P(J) * (I-B(J)))
380: PRINT "FIT="; T
390: INPUT "AMT. OF ADD. TAX? "; A

400: INPUT "AMT. OF TAX CREDITS? ";C

410: z = s*.0935
420: IF Z>3029.40 THEN LET Z = 3029.40
430: IF Z>0 THEN PRINT "S.S. TAX= ";Z

440: T = T + A-C + Z
450: PRINT "EST. TOTAL TAX="; T
460: END

Note: Tax tables have standard deduction built-in

Compute income less exemptions
Minimum income is zero

Display

Compute line number of appropriate tax table for filing status
And restore so READ will get right table
Read number of lines in table
Loop to read in table
Read baseline, minimum tax, and percent for each tax bracket

Save pointer to highest applicable bracket

Compute FIT (see text)
Display FIT
Get any miscellaneous tax obligations

Get any miscellaneous tax credits

Compute social security tax on self-employment income

Limit S.S. tax to maximum
Display if S.S. tax is greater than zero

Total tax
And display

195

800: REM TABLE FOR SINGLE TAXPAYERS
801: DATA 14
802: DATA 0,0,0
803: DATA 2300,0,.12
804: DATA 3400,132,.14
805: DAT A 4400,272,. 16
806: DATA 6500,608,.17
807: DATA 8500,948,.19
808: DAT A 10800, 1385, .22
809: DATA 12900,1847,.23
810: DATA 15000,2330,.27
811: DATA 18200,3194,.31
812: DATA 23500,4837,.35
813: DATA 28800,6692,.40

814: DATA 34410,8812,.44
815: DATA 41500,12068,.50

850: REM TABLE FOR MARRIED FILING SEPAR.
851: DATA 13
852: DATA 0,0,0
853: DATA 1700,0,.12
854: DATA 2750,126,.14
855: DATA 3800,273,.16
856: DATA 5950,617,.19
857: DATA 8000, 1006,.22
858: DATA 10100,1468,.25
859: DATA 12300,2018,.29
860: DA TA 14950,2787 ,.33
861: DATA 17600,3661,.39
862: DATA 22900,5728,.44

196

863: DATA 30000,8852,.49
864: DAT A 42800, 15124,.50

900: REM TABLE FOR MARRIED FILING JOINT
901: DATA 13
902: DATA 0,0,0
903: DATA 3400,0,.12
904: DATA 5500,252,.14
905: DAT A 7600,546,. 16
906: DATA 11900,1234,.19
907: DATA 16000,2013,.22
908: DATA 20200,2937,.25
909: DATA 24600,4037,.29
910: DATA 29900,5574,.33
911: DATA 35200,7323,.39
912: DATA45800,11457,.44
913: DATA 60000,17705,.49
914: DATA 85600,30249,.50

950: REM TABLE FOR HEAD OF HOUSEHOLD
951: DATA 14
952: DATA 0,0,0
953: DATA 2300,0,.12
954: DATA 4400,252,.14
955: DATA 6500,546,.16
956: DATA 8700,898,.20
957: DATA 11800,1518,.22
958: DATA 15000,2222,.23
959: DATA 18200,2958,.28
960: DATA 23500,4442,.32

197

961: DATA 28800, 6138, .38
962: DATA 34100, 8152, .41
963: DATA 44700, 12498, .49
964: DAT A 60600, 20289, . 50

Relationship of Two Variables

The PC-3 Computer an excellent tool for making many small statistical tests. As an example of this capability, this program

calculates the basic tests which are often used to compare a series of paired observations. The program solicits the observations

which are entered in pairs. When there are an independent and a dependent variable, the dependent variable is X and the independ­
ent is Y. If the variables are independent, then simply assign one to X and one to Y.

The program loops through the observations and computes several quantities which are used to calculate the desired statistics.

These quantities are the Sum of X, the Sum of X2
, the Sum of Y, the Sum of Y2

, and the Sum of X*Y. The mean of Xis then

computed with the formula:

M
Sum of X

ean = ----
x N

Where N is the number of observation pairs. The standard deviation of X is then calculated with these formulas:

2 (Sum of X) 2

Sum of Squaresx = Sum of X - ___ N __ _

. . j Sum of Squares Standard Dev1at1onx = x
(N - 1)

198

The mean and standard deviation of Y are computed with the same formulas. These quantities are then used to calculate the

correlation coefficient between the two variables using the formulas:

S f P S f X * Y
(Sum of X) * (Sum of Y)

um o roductsx,y = um o - N

Sum of Products(x)
Correlation x,v

V (Sum of Squaresx) * (Sum of Squaresy)

Finally the program computes the coefficients for the linear regression equation using the formulas:

Sum of Products x,y

Sum of Squaresy
a= Meany - (bx,y * Mean x)

The coefficients are then shown in the regression equation:

Y=a+bx.yX

Relationship of Two Variables Program

10: A = 0, B = 0, C = 0, D = 0, V = 0
20: INPUT "NUMBER OF OBSERV.? "; N
30:DIM X(N), Y(N)
40:WAIT48
50: PAUSE "ENTER "; N;" PAIRS OF OBS."

Initialize variables to accumulate sums
Get number of observations
Allocate arrays to hold observations
Set 3/4 second wait for prompts during data entry
Prompt start of data entry

199

60: FOR I = 1 TO N
70: PRINT "PAIR "; I
80: INPUT "X? "; X(I)
90: INPUT "Y? "; Y(I)

100: NEXT I

110:WAIT 128

120: INPUT "DISPLAY OR PRINTER? ";W$
130: IF (LEFT$ (W$, 1) = "P") THEN PRINT= LPRINT

140: INPUT "LIST OF DATA? "; W$
150: IF (LEFT$ (W$, 1) = "Y") THEN LET V = 1

160: FOR I= 1 TON
170: IF (V = 1) THEN PRINT X(I), Y(I)
180: A= A+ X(I)
190: B = B + X(I) A 2
200: C = C + Y(I)
210: D = D + (Y(l)A2)
220: E=E+(X(l)*Y(I))
230: NEXT I

240:WAIT

250: F = A/N
260: PRINT "MEAN OF X = "; F
270: G = C/N
280: PRINT "MEAN OF Y = "; G

Loop for number of observations

Prompt with number of pair

Prompt and input X

Prompt and input Y

Reset WAIT time for data listing

Ask if output is to display or printer

If printer, then switch

Ask if listing of data is desired

If so, set flag; default V=-0 set in line 10

Loop through data
If flag is set, then print observation pair

Accumulate the sum of X
Accumulate the sum of the squares of X

Accumulate the sum of Y
Accumulate the sum of the squares of Y
Accumulate the sum of the products of the pairs

Reset WAIT so that Enter is required

Compute mean of X
And display
Compute mean of Y
And display

200

290: J =B-((AA 2)/N)
300: K = SOR (J/(N - 1))
310: PRINT "STD. DEV. X = "; K

320: L = D-((C A 2)/N)
330: M = SOR (L/(N - 1))
340: PRINT "STD. DEV. Y = "; M

350: 0 = E - ((A* C)/N)
360: R = 0/ SOR (J * L)
370: PRINT "CORREL. COEF. = "; R

380: P = O/J
390:Q=G-(P*F)
400: WAIT 128
410: PRINT "REGRESSION EQUATION IS"
420: WAIT
430: PRINT "Y = "; Q;" + "; P; "X"
440: PRINT= PRINT
450: END

Minefield Game

Compute the sum of squared deviates of X
Compute the standard deviation of X

And display

Compute the sum of squared deviates of Y
Compute the standard deviation of Y
And display

Compute the sum of products of the deviates
Compute the correlation

And display

Compute the regression coefficient
Compute the Y-intercept
Reset WAIT for leadin display

Print lead in display for equation

Reset WAIT for leadin display
Print the regression equation

Reset output to display

This program provides a simple minefield game. The game is played on a 10 x 10 set of squares like a checkerboard. The top of

the board is north, the bottom south, the left west, and the right east. The columns are numbered horizontally from left to right,

from 1 to 10. The rows are numbered vertically from bottom to top, also from 1 to 10. You begin the game in the southwest

corner, square (1, 1). The object is to move to the northeast corner, square (10, 10). You make moves by entering a number from

1 to 9 to indicate the direction you want to take. The directions are indicated by the position of the key on the numeric pad, i.e.

201

Northwest North Northeast

7 8 9

West East

4 5 6

Southwest South Southeast

2 3

At random squares on the board there are "mines". If you enter a square with a mine, you lose. To help you avoid the mines, the

PC-3 Computer will beep as it enters a square. It will make one beep for each adjacent square with a mine, but it won't tell you the

direction. The program checks to insure that no mines are laid so close to the corners that it is difficult or impossible to start or

finish. You determine the number of mines by responding with a number in response to the question "DIFFICULTY?".

Notice the use of subroutines in this program to produce a short, simple main program with special functions isolated in separate

subroutines.

Minefield Game Program

10:S ~ 10
20:DIM F (S+ 1,S+ 1)

30:WAIT 128
40: INPUT "DIFFICULTY LEVEL? "; B
50: PRINT "ONE MINUTE FOR SETUP"

Set size of field to 10 by 10
Allocate array 1 larger in both directions - Extra size facilitates loop

at line 220
Set WAIT for 2 seconds
Ask for number of mines
Display warning about setup time

202

60: FOR I = 1 TO S
70: FOR J = 1 TO S
80: F (S, S) = 0

90: NEXT J
100: NEXT I

110: FOR I= 1 TO B
120: X = RND (S)

130: Y = RND (S)
140: IF ((X + Y) < 5) THEN GOTO 120
150: IF (((1 + S - X) + (1 + S - Y)) < 5) THEN GOTO 120
160: F (X, Y) = 1
170: NEXT I
180: F (S, S) = 9

190: X = 1 : Y = 1

200: PRINT "YOU ARE AT (";X;", ";Y;")"
210: GOSUB 400
220: BEEP C

230: INPUT "WHICH WAY NOW? "; A$
240: D = VAL (A$)
250: IF ((D < 1) OR (D > 9)) THEN PRINT

"1 TO 9 ONLY, PLEASE" : GOTO 280

260: IF (D > 6) THEN GOSUB 500
270: IF (D < 4) THEN GOSUB 550
280: IF ((D = 3) OR ((D= 6) OR (D = 9)) THEN GOSUB 600

Loop through entire array and set each entry to zero - Needed to clear out

mines from prior games

Loop for number of mines
Get random X coordinate
Get random Y coordinate
Check it too close to starting corner
Check if too close to ending corner
Mark mine

Mark goal

Set start to (1, 1)

Start of turn - show location
Count the number of nearby mines
Beep to indicate number of nearby mines

Ask for direction from numeric pad
Convert keystroke to number
If not from numeric pad, then ask again

If from top row then GOSUB to north subroutine
If from bottom row, then GOSUB to south subroutine
If from right side, then GOSUB to east subroutine

203

290: IF ((D = 1) OR (D = 4) OR (D = 7)) THEN GOSUB 650

300: IF (F(X, Y) = 1) THEN GOTO 700
310: IF (F(X, Y) = 9) THEN GOTO 750
320: GOTO 200

400:C = 0
410: FOR I= X - 1 TO X + 1
420: FOR J = Y - 1 TO Y + 1
430: IF (F(l,J) = 1) THEN LET C = C + 1
440: NEXT J
450: NEXT I
460: RETURN

500: IF (Y =S) THEN PRINT
"YOU ARE AT NORTH EDGE": GOTO 520

510: Y = Y + 1
520: RETURN

550: IF (Y = 1) THEN PRINT
"YOU ARE AT SOUTH EDGE": GOTO 570

560: Y = Y - 1
570: RETURN

600: IF (X =S) THEN PRINT
610: "YOU ARE AT EAST EDGE": GOTO 620
610: X = X + 1
620: RETURN

If from left side, then GOSUB to west subroutine

If new square contains a bomb, then GOTO losing message
If new square is the goal, then GOTO winning message
Otherwise loop

Mine counting subroutine
Set counter for mines
Loop through neighboring squares
If there is a mine, increment count by one

North subroutine

If at north edge, don't do anything
Move one square north
And return

South subroutine If at south edge, don't do anything

Move one square south
And return

If at east edge, don't do anything

Move one square east
And return

204

650: IF (X = I) THEN PRINT
"YOU ARE AT WEST EDGE": GOTO 670

660: X = X - 1
670: RETURN

700: PRINT "BOOM!!!!!!! YOU LOSE"
710: GOTO 800

750: PRINT "CONGRATULATIONS, YOU WIN"

800: INPUT "ANOTHER GAME? ";A$
810: IF (LEFT$ (A$, 1) = "Y") THEN GOTO 40
820: END

If at west edge, don't do anything

Move one square west

And return

Display losing message

And go to common end

Display winning message

Ask about a not her game

Go again if first letter is "Y"

Otherwise end

205

CHAPTER 10 TROUBLESHOOTING
This chapter provides you with some hints on what to do when your Radio Shack PC-3 Pocket Computer does not do what you

expect it to do. It is divided into two parts - the first part deals with general machine operation, and the second with BASIC

programming. For each problem, there are a series of suggestions provided. You should try each of these, one at a time, until

you have fixed the problem.

If:

You turn on the machine but there is nothing on the

display.

There is a display, but no response to keystrokes.

You have typed in a calculation or answer and get no

response.

Machine Operation

Then You Should:

1. Check to see that the slide switch is set to RUN, PRO, or

RSV.

2. Push the @:@ key to see if AUTO POWER OFF has been

activated.

3. Replace the batteries.

1. Press @ key to clear.

2. Press @) ((SHIFT) @) to clear.

3. Turn OFF and ON again.

4. Hold down any key and push RESET.

5. Push RESET without any key.

1. Push (ENTER) .

207

You are running a BASIC program and it displays

something, and stops

You enter a calculation and it is displayed in BASIC

statement format (colon after the first number)

You get no response from any keys.

BASIC Debugging

1. Push (ENTER) .

1. Switch from the P ROgram into the RUN mode for

calculations.

1. Hold down any key and push RESET.

2. If you get no response from any key, even when the above

operation is performed, push the RESET without any key.

(With this operation, the program, data, and all reserved

contents are cleared.)

A newly entered BASIC program may not always work for the first time. Even if you are simply keying in a program that you
know is correct, such as those provided in this manual, it is usual to make at least one typing error. If it is a new program of any
length, it will probably contain at least one logic error, as well. Following are some general hints on how to find and correct your
errors.

You run your program and get an error message:

1. Go back to the PROgram mode and use the CD or the CI) keys to recall the line with the error. The cursor will be

positioned at the place in the line where the PC-3 Computer got confused.

208

2. If you can't find an obvious error in the way in which the line is written, the problem may lie with the values which are being

used. For example, CH R$ (A) will produce an error if A has a value of 1 because CH R$ (1) is an illegal character. Check the

values of the variables in either the RUN or the PROgram mode by typing in the name of the variable followed by (ENTER).

You RUN the program and don't get an error message, but it doesn't do what you expect.

3. Check through the program line by line using LIST and the C!J and OJ keys to see if you have entered the program

correctly. It is surprising how many errors can be fixed by just taking another look at the program.

4. Think about each line as you go through the program as if you were the computer. Take sample values and try to apply the

operation in each line to see if you get the result that you expected.

5. Insert one or more extra PR I NT statements in your program to display key values and key locations. Use these to isolate

the parts of the program that are working correctly and the location of the error. This approach is also useful for determining

which parts of a program have been executed. You can also use STOP to temporarily halt execution at critical points so

that several variables can be examined.

6. Use TRON and TROFF, either as commands or directly within the program, to trace the flow of the program through

individual lines. Stop to examine the contents of critical variables at crucial points. This is a very slow way to find a pro­
blem, but sometimes it is also the only way.

209

CHAPTER 11 MAINTENANCE OF THE PC-3 POCKET COMPUTER
To insure trouble-free operation of your Radio Shack PC-3 Pocket Computers, we recommend the following:

* Always handle the Pocket Computer carefully, as the liquid crystal display is made of glass.

* Keep the Computer in an area free from extreme temperature changes, moisture, or dust. During warm weather, vehicles

left in direct sunlight are subject to high temperature build up. Prolonged exposure to high temperature may cause damage

to your Computer.

* Use only a soft, dry cloth to clean the Computer. Do not use solvents, water, or wet cloths.

* To avoid battery leakage, remove the batteries when the Computer will not be in use for an extended period of time.

* If service is required, the Computer should only be returned to an authorized Radio Shack Service Center.

* If the Computer is subjected to strong static electricity or external noise, it may "hang up" (all keys become inoperative).

If this occurs, press the ALL RESET button while holding down any key. (See Troubleshooting.)

* Keep this manual for further reference.

(NOTE: For maintenance of the PC-3 Printer/Cassette Interface, please see Chapter 7.)

211

APPENDIX A ERROR MESSAGES
The PC-3 Pocket Computer has nine different error messages.

Error

Number Meaning

Syntax Error.

2 Calculation error. Either you have tried to use a number which exceeds the capacity of the PC-3 Computer:

9.9 IE 99* HJ

or you have tried to divide by zero:

5/0

3 DIM Error/Range over Error.

Array variable already exists, array specified without first DI Mensioning it or array subscript exceeds size of array

specified in DIM statement.
DIM 8(256)
Specified numeric value is outside permitted range, etc.

10: FOR I= 1 TO 35000

4 Line number error. You have specified an invalid line number.

5 Nesting Error.

Buffer space exceeded or FOR statement nested too deeply, etc.
213

6 Memory overflow error. You have exceeded the momory capacity of the PC-3 Pocket Computer with some com­

bination of programs and data:

1 0 : D I M B (100, 100)

7 Print format error.

Data cannot be displayed in accordance with the format specified by USING command.

10: USING"####"

20: A= 123*20

30: PRINT A

8 1/0 device error. An error has occurred in sending information between the PC-3 Computer and another device,

such as the Printer or tape on the PC-3 Printer/Cassette Interface, check the low battery indicator on the PC-3 Printer/

Cassette Interface. Check all the connections.

9 Other. Some other error has occurred which is not one of the above errors. Often this is due to an illegal value:

CHR$ (1)

or a misuse of preallocated variables:

10: A= 5: PRINT A$

214

APPENDIX B ASCII CHARACTER CODE CHART
The following chart shows the conversion values for use with CHR$ and ASC. The column shows the first hex character or the first

four binary bits, the row shows the second hex character or the second binary bits. The upper-left corner of each box contains

the decimal number for the character. The lower-right corner shows the character. If no character is shown, then it is an illegal

character on the PC-3 Pocket Computer. For example, the character' A' is a decimal 65 or a hex 41 or a binary 01000001.

215

First 4 bits

Hex 0 1 2 3 4 5 6
Binary 0000 0001 0010 0011 0100 0101 0110

0 32 48 64 81,1 96

0000 SP 0 @ p

1 33 49 65 81

0001 A Q

2 34 51,1 66 82

s 0010 2 B R
e 3 35
C 51 67 83
0 0011 # 3 C s
n
d 4 36 52 68 84

4 0100 $ 4 D T

B 5 37 53 69 85
i 0101 % 5 E u
t
s 6 38 54 71,1 86

0110 & 6 F V

7 39 55 71 87
0111 7 G w

8 41,1 56 72 88

1000 8 H X

216

9 41 57 73 89

1001 9 y

A 42 58 74 g(il

1010 * j z
B 43 59 75 91

1011 + K v
C 44 6(,l 76 92

1100 < L ¥

D 45 61 77 93

1101 M Tl

E 46 62 78 94

1110 > N A

F 47 63 79 95
1111 I ? 0

PC-3 does not recognize codes in shaded area. If you enter the code number in the shaded area, an error will result.

217

APPENDIX C FORMATTING OUTPUT
It is sometimes important or useful to control the format as well as the content of output. The PC-3 Pocket Computer controls

display formats with the USING verb. This verb allows you to specify:

* The number of digits

* The location of the decimal point

* Scientific notation format

* The number of string characters

These diffrerent formats are specified with an "output mask". This mask may be a string constant or a string variable:

10: USING "####"
20: M$ = "&&&&&&"

30: USING M$

When the USING verb is used with no mask, all special formatting is cancelled.

40: USING

A USING verb may also be used within a PRINT statement:

50: PRINT USING M$, N

Wherever a USING verb is used, it will control the format of all output until a new USING verb is encountered.

218

Numeric Masks

A numeric USING mask may only be used to display numeric values, i.e., numeric constants or numeric variables. If a string

constant or variable is displayed while a numeric USING mask is in effect, the mask will be ignored. A value which is to be dis­

played must always fit within the space provided by the mask. The mask must reserve space for the sign character, even when the

number will always be positive. Thus, a mask which shows four display positions may only be used to display numbers with three

digits.

Specifying Number of Digits

The desired number of digits is specified using the '#' character. Each '#' in the mask reserves space for one digit. The display

or print always contains as many characters as are designated in the mask. The number appears to the far right of this field; the

remaining positions to the left are filled with spaces. Positive numbers, therefore, always have at least one space at the left of the

field. Since the PC-3 Pocket Computer maintains a maximum of 10 significant digits, no more than 11 '#' characters should be

used in a numeric mask.

NOTE: In all examples in this appendix, the beginning and end of the displayed field will be marked with an' I' character to

show the size of the field.

Statement

10: USING "####"

20: PRINT 25

30: PR INT -350

40: PRINT 1000

Display

(Set the PC-3 Computer to the RUN position, type RUN, and

press (ENTER) .)

2 5

-3 5 0

ERROR 7 IN 40
219

Notice that the last statement produced an error because 5 positions (4 digits and a sign space) were required, but only 4 were

provided in the mask.

Specifying a Decimal Point

A decimal point character, '.', may be included in a numeric mask to indicate the desired location of the decimal point. If the

mask provides fewer significant decimal digits than are required for the value to be displayed, the remaining positions to the right

will be filled with zeros. If there are more significant decimal digits in the value than in the mask, the extra digits will be truncated

(not rounded):

Statement

10: USING "####.##"

20: PRINT 25

30: PR INT -350.5

40: PR INT 2.547

Specifying Scientific Notation

Display

2 5. 0 0

-350.50

2. 5 4

A ""'-" character may be included in the mask to indicate that the number is to be displayed in scientific notation. The'#' and

'.' characters are used in the mask to specify the format of the "characteristic" portion of the number, i.e., the part which is

displayed to the left of the IE. Two '#' characters should always be used to the left of the decimal point to provide for the sign

220

character and one integer digit. The decimal point may be included, but is not required. Up to 9 '#' characters may appear to the

right of the decimal point. Following the characteristic portion, the exponentiation character, IE, will be displayed followed by one

position for the sign and two positions for the exponent. Thus, the smallest scientific notation field would be provided by a mask

of "##"'" which would print numbers of the form' 2 IE 99'. The largest scientific notation field would be"##.#########""

which would print numbers such as '-1.234567890 IE-12':

Statement

10: USING "###.##""

20: PRINT 2

30: PRINT -365.278

Specifying Alphanumeric Masks

2.00IE00

-3.651E02

String constants and variables are displayed using the'&' character. Each '&' indicates one character in the field to be displayed.

The string will be positioned at the left end of this field. If the string is shorter than the field, the remaining spaces to the right

will be filled with spaces. If the string is longer than the field, the string will be truncated to the length of the field:

Statement

10: USING "&&&&&&"

20: PR INT "ABC"

30: PRINT "ABCDEFGHI"

Display

ABC

ABCDE
221

Mixed Masks

In most applications, a USING mask will contain either all numeric or all string formatting characters. Both may be included in

one USING mask, however, for certain purposes. In such cases, each switch from numeric to string formatting characters or vice

versa, marks the boundary for a different value. Thus, a mask of "#####&&&&" is a specification for displaying two separate

values - a numeric value which is allocated 5 positions and a string value which is allocated 4 positions:

Statement

10: PRINT USING "###.##&&"; 25; "CR"

20: PR INT -5.789, "DB"

Display

25.00CR

-5.780B

Remember: Once specified, a USING format is used for all output which follows until cancelled or changed by another USING

verb.

222

APPENDIX D EXPRESSION EVALUATION AND OPERATOR PRIORITY

When the Radio Shack PC-3 Pocket Computer is given a complex expression, it evaluates the parts of the expression in a sequence

which is determined by the priority of the individual parts of the expression. If you enter the expression:

100/ 5+45

as either a calculation or as a part of a program, the PC-3 Computer does not know if you mean:

100
5 + 45

=2 or ~ + 45 = 65
5

Since the PC-3 Computer must have some way to decide between these options, it uses its rules of operator priority. Because

division has a higher "priority" than addition (see below), it will choose to do the division first and then the addition, i.e., it will

choose the second option and return a value of 65 for the expression.

Operator Priority

Operators on the Ratio Shack PC-3 Computer are evaluated with the following priorities from highest to lowest:

1. Parentheses

2. Variables and Pseudovariables

3. Exponentiation ("') when preceded by a multiplication which omits the operator

4. Multiplication which omits the operator

5. Functions
6. Exponentiation ("')

223

7. Unary minus, negative sign(-)

8. Multiplication and division (*, /)

9. Addition and subtraction(+,-)

10. Relational operators (<, <=, =, <>, >=, >)
11. Logical operators (AND, OR)

The fourth item refers to usage such as 2A or 5C(2) in which a multiplication operator is implied, but not shown. The third refers

to the combination of this with exponentiation, such as 3A"3 or 5D"1.5. In these combined cases the exponentiation will be

done first and the multiplication second.

When there are two or more operators at the same priority level, the expression will be evaluated from left to right. Note that

with A+B-C, for example, the answer is the same whether the addition or the subtraction is done first.

When an expression contains multiple nested parentheses, the innermost set is evaluated first and evaluation then proceeds outward.

Sample Evaluation

Starting with the expression:

((3+5-2) *6+2) / 10" LOG 100

The PC-3 Computer would first evaluate the innermost set of parentheses. Since '+' and '-' are at the same level, it would move

from left to right and wou Id do the addition first:

((8-2) * 6+2) / 10"LOG 100

Then it would do subtraction:

224

((6) * 6+2) / 10"" LOG 100
or:

(6*6+2) / 10-"LOG 100

In the next set of parentheses, it would do the multiplication first:

(36+2) / 10-"LOG 100

And then the addition:

(38) / 10""LOG 100
or:

38 I 10"LOG 100

Now that the parentheses are cleared, the LOG function has the highest priority, so it is done next:

38 I 10"" 2

The exponentiation is done next:

38 I 100

And last of all, the division is performed:

0.38

This is the value of the expression.

225

APPENDIX E FEATURE COMPARISON OF THE PC-1, PC-2, AND PC-3

The three Radio Shack Pocket Computers, the PC-1, the PC-2, and the PC-3, have many features in common, but there are some

significant differences. Sometimes the same features are present, yet act in a slightly different fashion. In order to facilitate the

use of programs on different models, the following comparison charts are provided.

Verbs and Commands

In the following chart, the symbol:

M indicates that the feature can only be used in manual execution, i.e., as a command.

P indicates that the feature can only be used within a program.

B indicates that the feature can be used in both contexts.

When no symbol is shown, the feature is not available on that machine.

PC-1 PC-2 PC-3 Comments

AREAD p B p See Note 1

ARUN p

BEEP p B B PC-2 has tone and duration

CHAIN p p p

CLEAR B B B

CLOAD M M M

CLOAD? M M M

CLS B

226

- - - - - - - - - - - -- - - - - - - - - -

PC-1 PC-2 PC-3 Comments

COLOR p

CONT M M M

CSAVE M B B

CSIZE B
CURSOR B
DEGREE B B B

DATA p p

DEBUG M

DIM B B

END p p p

FOR ... TO ... STEP p p p

GOSUB p p p

GOTO p B B

GCURSOR B

GPRINT B

GRAD B B B

GRAPH B

IF ... THEN p p p

INPUT p p p

INPUT# B B B

LET p p p

227

PC-1 PC-2 PC-3 Comments

LF B

LINE B

LIST M M M

LLIST B M PC-1 can emulate with LIST

LOCK B

LPRINT B p See Note 2

MERGE M M M

NEW M M M

NEXT p p p

ON ... ERROR p

ON ... GOSUB p p

ON ... GOTO p p

PAUSE p B p

PASS M

PRINT p B p See Note 2

PRINT# B B B

RADIAN B B B

RANDOM B B

READ p p

REM p p p

RESTORE p p

228
- ---

PC-1 PC-2 PC-3 Comments

RETURN p p p

RLINE B

RMTOFF B
RMTON B

ROTATE B

RUN M M M

SORGN B

STOP p p p

TAB B
TEST B
TEXT B
TROFF B B

TRON B B

UNLOCK B
USING p B B See Note 3

WAIT B B

Note 1: There are some minor differences between the PC-3 and the PC-1 in the behavior of AREAD following PRINT, but these

are unlikely to cause problems in ordinary usage.

Note 2: Add PRINT=LPRINT and PRINT=PRINT statements to PC-1 programs to achieve the desired results on the PC-3.

Note 3: On the PC-1 the USING format applies to all displays on the line in which the USING clause appears, even if the variable
precedes the verb. On the other models, the USING format applies only to displays which follow the verb and remains in effect

229

until cancelled by another USING verb.

Example:

10 A= -123.456

20 PAUSE USING "####.##"; A

30 PAUSE A, USING "####"; A
When executed, this program displays the following:

• PC-1
-123

• PC-3
-123.45

-123.45
-123

-123.45
-123

Note 4: As compared with the PC-1, the PC-3 is faster in processing speed for calculations. Therefore, when game programs for

the PC-1 are used with the PC-3, adjust the game speed, etc.

Pseudo variables

In this and the following charts, the features are simply marked with a 'Y' when the machine has the feature.

INKEY$

MEM

Pl or rr

TIME

PC-1

y
y

PC-2

y
y
y
y

PC-3

y
y
y

Comments

PC-1 has only rr

230

- -

Numeric Functions

PC-1 PC-2 PC-3 Comments

ABS y y y

ACS y y y

ASN y y y

ATN y y y

cos y y y

DEG y y y

DMS y y y

EXP y y y

INT y y y

LOG y y y

LN y y y

NOT y y

POINl y

RND y y

SGN y y y

SIN y y y

SOR ory' y y y PC-1 has only y
STATUS y

TAN y y y

231

String Functions

PC-1 PC-2 PC-3 Comments

ASC y y

CHR$ y y

LEFT$ y y

LEN y y

MID$ y y

RIGHT$ y y

STR$ y y

VAL y y

Operators

PC-1 PC-2 PC-3 Comments

A y y y See Note 4

*,I,+, - y y y

>, >=, =, <>, <=, < y y y

AND, OR, y y

& y y

Note 4: Raising a negative number to a power with the" operator can result in incorrect signs. See Chapter 4.

232

Precautions

Programs for the PC-1, when loaded from its tape, can be used with the PC-3. When entering the PC-1 programs into this unit

from PC-3 keyboard, however, the following precautions should be observed:

For example, the following are keyed-in for program entry:

10 IF N = LPRINT A (ENTER)

With the PC-1, this results in a command for "If N = L, display A"

(IF N= L PR INT A). With the PC-3, however, it becomes a command for "If N =, print A" (IF N = LPRINT A), causing a syntax

error (ERROR 1) to occur when executed. This is because the PC-3 has an LPRINT command unavailable from the PC-1.

Therefore, an IF statement should be keyed-in as:

10 IF N=L THEN PRINT A

Thus, a character string for "variable and command" with the PC-1 may be regarded as "a command".

233

APPENDIX F SPECIFICATIONS
Model:

Processor:

Programming Language:

Memory Capacity:

Stack:

Operators:

Numeric Precision:

Editing Features:

Memory Protection:

PC-3 Pocket Computer

8-bit CMOS CPU

BASIC

System ROM:

RAM

System

User

Fixed Memory Area

(A~ Z, A$~ Z$)

Reserve Area

Program/Data Area

Subroutine: 10 stacks

FOR-NEXT:

Function:

Data:

5 stacks

16 stacks

8 stacks

24 K Bytes

About 500 Bytes

208 Bytes

48 Bytes

1438 Bytes

Addition, subtraction, multiplication, division, exponentiation, trigonometric and inverse trigono­

metric functions, logarithmic and exponential functions, angle conversion, square root, sign, absolute,

integer, relational operators, logical operators

10 digits (mantissa) + 2 digits (exponent)

Cursor left and right, line up and down, character insert, character delete

CMOS Battery backup

234

Display:

keys:

Power Supply:

Power Consumption:

Operating Temperature:

Dimensions:

Weight:
Accessories:

Option:

24-character liquid crystal display with 5 x 7 dot characters

52 keys: Alphabetic, numeric, special symbols, and functions; Numeric pad; User-defined keys.
6.0V DC Lithium batteries

Type: CR-2032

6.0V DC@ 0.03W
Batteries are sufficient for approximately 300 hours usage without external power supply.

0°C ~ 40°C (32°F ~ 104° F)

135(W) x 70(D) x 9.5(H) mm

5-5/16"(W) x 2-3/4"(0) X 3/8"(H)

Approximately 115g (0.25 lbs.) (with batteries)
Wallet, two lithium batteries (built-in), two keyboard templates, and owner's manual

Printer /Cassette Interface

235

- -

INDEX
& 44 ALL RESET 17 Cursor 16

* 49 AND 52 Cassette 87
+ 49 AREAD 117 Commands 96,99

49 ASC 184 Compatabi I ity 226
I 49 ASCII 215 Constants 41,44
A

49 ASN 177 DATA 126
v 181 ATN 177 DEF key 73
< 51 Arrays 46 DEG 178
◄ 26 Auto off (Auto Power Off) 24 DEGREE 125
<= 51 BEEP 119 DELete key 31, 65
<> 51 Batteries, PC-3 Computer 19 DIM 128

51 Busy 16 DMS 178
> 51 CA key 14 Debugging 208

► 26 CHAIN 120 Display 15
>= 51 CHA$ 184 END 130
1T 175 CLEAR 124 ENTER key 12,24
t 208 CLOAD 99 EXP 179

! 208 CLOAD? 101 Editing calculations 26
ABS 176 Clear key 14 Editing programs 63
AC adapter, PC-3 Printer/Cassette 80 CONT 102 Error Messages 213
Interface cos 177 Exponentiation 179
ACS 176 CSAVE

237
103 Expressions 49

FOR ... TO ... STEP 131 Logical expressions 52 Pl 175
Formatting output 218 Loops 69 PRINT 156
Functions 98,174 MEM 175 PRINT# 158
GOSUB 134 MERGE 108 PROgram mode 61
GOTO 105,136 MID$ 185 Paper feed 84
GRAD 138 Maintenance 211 Parentheses 36
Hexadecimal 43 Masks 219 Power 79
IF ... THEN 139 Memory Protection 70 Preallocated variables 47
INKEY$ 174 NEW 113 Printer 85
INPUT 142 NEXT 149 Priority 223
INPUT# 145 NOT 52 Program 59
INSert key 66 Numeric expressions 49 Pseudova ri ables 174
INT 179 Numeric variables 46 RADIAN 160
LEFT$ 184 ON (Start up) 23 RANDOM 161
LEN 185 ON ... GOSUB 150 READ 162
LET 146 ON ... GOTO 152 REM 164
LIST 106 OR 52 RESET 17
LUST 107 Operator precedence 36 RESTORE 165
LN 179 Operator priority 223 RETURN 167
LOG 179 Operators 49 RIGHT$ 185
LPRINT 147 P -e- NP 85 RND 180
Labelled programs 73 PASS 114 RUN 115
Limits of numbers 43 PAUSE 154 RUN mode 61
Line numbers 59 PC-3 Printer/Cassette Interface 77 Range of numbers 43

238

--

ReSerVe mode 74 Verbs 97, 117
Relational expressions 51 WAIT 173
Remote On/off 79
SGN 181
SHIFT key 24
SIN 181
SOR 181
STOP 168
STR$ 186
Scientific notation 41
Square root 181
Statements 59
String expressions 50
String variables 47
Subroutines 134
TAN 182
TROFF 169
TRON 170
Tape 87
Templates 76
Troubleshooting 207
USING 171
VAL 186
Variables 45

239

Program Examples

In the preceding pages, you have probably acquired some new information on a number of program commands. Like driving a car

or playing tennis, things that can be improved by actual practice, you can improve your programming only by generating as many

programs as possible, regardless of your skill. It is also important for you to refer to programs generated by others. The following

pages contain a variety of suggestions for programs using the BASIC commands. We provide you with the necessary equations and

also inclube flowcharts. The rest is up to you!

(Radio Shack and/or its franchises assume no responsibilities or obligations to any losses or damages that could arise through the

use of the software programs employed in this owner's manual.)

241

CONTENTS
(program title) {page)

• NEWTON'S METHOD FOR FINDING ROOTS OF EQUATIONS 243

• AVERAGE, VARIANCE AND STANDARD DEVIATION .. 248

• INTERSECTION BETWEEN CIRCLES AND STRAIGHT LINES 255

• NUMBER OF DAYS CALCULATION .. 261

• TYPING PRACTICE ... 265

• SOFTLANDI NG GAME .. 270

• MEMORY CHECKER .. 275

• BUG HUNT ... 281

• DOUBLE ROTATION .. 287

Showing the bytes used in each program itself

The number of bytes used in each program are shown at the end of each program listing. For instance, at the end of the TYPING

PRACTICE program, 475 were used bytes. The way to find this out follows:

At RUN position

1) CLEAR (ENTER)

2) 1438 (=J MEM (ENTER) ➔ number of bytes.

242

Program Title: NEWTON'S METHOD FOR FINDING ROOTS OF EQUATIONS

OVERVIEW (mathematical)

Finding the roots of equations is usually troublesome, but by using Newton's Method, the approximate roots of equations can

be found.

When 1 root is found, depending on the interval width, by using Newton's Method, the starting point automatically changes.

CONTENTS

If the absolute value of the distance between Xn and Xn+l is less than 10-8
, Xn is considered a root and is displayed. Here,

the first derivative is defined in the following way;

f'(X) = f(X+h)-f(X)
h

(h is the minute interval)

Change IE-8 in line 340 to change the value for ,a-s.

243

INSTRUCTIONS

INPUT

Starting point

Minute interval

Interval

OUTPUTS

y

Starting point

Root value (by pressing the (ENTER) key, the next interval's root is found)

EXAMPLE

x 3
- 2x 2

- x + 2 = 0 (the roots are -1, 1, 2)

starting point = 0
minute interval = 10-4

interval = 0.5

The above values are used in the calculation.

The functions are to be written into lines after 500 as subroutines.

How to type in the example:
1. Go into PRO mode by operating the mode change key.

2. 500B = ((X-2) * X-1) * X+2 (ENTER)

510 RETURN (ENTER) That is all that has to be done.

244

Interval width

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @)CK] STARTING POINT=_ Waiting for starting point input

2 0 (ENTER) MINUTE INTERVAL=_ Waiting for minute interval input

3 0.0001 (ENTER) INTERVAL=_ Waiting for interval width input

4 0.5 (ENTER) ANSWER= 2. Display of roots

5 (ENTER) ANSWER= 1. By repeatedly pressing the (ENTER)
of the function are found.

key, the roots

6 (ENTER) ANSWER= -1.

7 (ENTER) ANSWER= 1.

8 (ENTER) ANSWER= -1.

9 (ENTER) ANSWER= -1.

10 (ENTER) ANSWER= -1.

11 (ENTER) ANSWER= 2.

245

FLOWCHART

A

10

Input (starting point,
interval and minute interval)

50

G=V
F=V
Z=(J

60 70

80

Newton's Method calculation

F=F+W
C=F

Newton's Method calculation

-~-
C=G
Z = 1

Newton's Method calculation
subroutine

300

320

340

350

X=C

Function calculation

Y=B
X=A+C

Function calculation

D=C
C= D-A*Y/(B-Y)

Roots are displayed

RETURN

246

Function calculation subroutine

500

RETURN

PROGRAM LIST
10: ''A": INPUT "STARTING

PDINT='';V
20:INPUT "MINUTE INTERV

AL="iA
30:INPUT "INTERVAL="iW
40:G=V:F=V:Z=0
50:IF Z=0 GOTO 70
60:G=G-W:C=G: GOTO 80
70:C=G:Z=l
80:GOSIJB 300
90:F=F+W:C=F

100: GOSUB 300
110:Gorn 50
120: END
300:X=C: GDSUB 500
310: '(=B: X=A+C
320:GDSUB 500
330:D=C:C=D-A*Y/(B-Y)
340:IF ABS (D-C)>=E-8

GOTO 300
350:BEEP 3: PRINT •ANSWE

R=",C
360:RETIJRN
500:B=((X-2)*X-1)*X+2
510: RETURN

268

MEMORY CONTENTS

A Minute interval u
B f (x) V Starting point

C XO w Interval

D f (x + h) X X

E y f {x)

F .J z Initial flag

G .J
H

I

J

K

L

M

N

0

p

Q

R

s
T

247

Program Title: AVERAGE, VARIANCE AND STANDARD DEVIATION

OVERVIEW
If the data are input, the total sum, average, variance, and standard deviation will be calculated for you. Revision of input data,

as well as data with weights, is possible.

CONTENTS
Total sum

Average

Variance

X =

a2 =

l:xi · fi

l:fi

l:(xi ~ x)fi

l:fi-1

(when there are no weights fi = 1)

INSTRUCTIONS

Standard deviation a = ..J;;'2

Number of data entries (up to 50)

1. At @ W , select whether or not there are any weights, then input the data.

2. @ W is used to find any revision positions in the data. @ W is used to revise the data.

3. The total sum, average, variance, and standard deviation will be calculated with @ (QJ .

EXAMPLE

I
14.1 14.2 14.3 14.4 14.5 (data with weights)

8 19 23 15 10

248

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 c@W NO. OF DATA=_ Waiting for number of data input

2 5 (ENTER) WEIGHTS= 1 /NO WEIGHTS= 2? _ Waiting for the selection of weights/no weights

3 1 (ENTER) X(1) =

?

4 14.1 (ENTER) F(1) =

?

5 8 (ENTER) X(2) =

?

12 14.5 (ENTER) F(5)=

?

13 10 (ENTER) > End of the process

249

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @CID X(1)=14.1

2 (ENTER) F(1) = 8

3 (ENTER) X(2) = 14.1 @El W is used to input the revised values
when data errors are found

4 @w X(2) =

REVISION VALUE=?_ Revised value is input

5 14.2 (ENTER) F(2) = 19

(ENTER)

250

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @CID TOT AL SUM = 1072.5 Display of total sum

2 (ENTER) MEAN VALUE= 14.3 Display of average

3 (ENTER) VARIANCE= 1.432432432IE-02 Display of variance

4 (ENTER) STD.DEV.= Display of standard deviation

5 (ENTER) 1.196842693 IE-01

6 (ENTER) > Processing finished

251

FLOWCHART

Data input

A

10;::=:::r::==:::.,
CLEAR WAIT0

20

30

40

50

70

Data input

END

Calculation

D
300 ___ ____c ___ _

400

Total sum, average,
variance, standard

deviation

-------'----
Total sum, average,
variance, standard

deviation

END

252

Data revision

B
200

210

230
y

(Data display

250
f (i)

y

(END)
Data revision

260
CD 0

PROGRAM LIST

10: "'A'': CLEAR : ~AIT 0
20:INPUT "NO. OF DATA=•

; p

WEIGHTS=2?•;A
40:IF A=2 DIM X(P-1):

GOTO 70
50:IF A=l DIM XCP-1),FC

P-1): GOTO 70
60: GOTO 30
70:FOR 1=0 TO P-1
80:Bs=·xc·+ STRS (I+l)+

V):"

85: PAUSE BS: INPUT :,u I)

: GOTO 100
90:GOTO 85

100:IF A=2 GOTO 150
120:BS="F("+ STRS (I+l)+

Y):Y

130:PAUSE BS: INPUT F(I)
: GOTO 150

140:GOTO 130
150: ~;E::<T I: END
200:•3•: WAIT :I=0
210:BS="X("+ STRS CI+l)+

•)='': J=l: PRINT BS; X
(I)

230:IF A=l LET BS="F("+
STR$ CI+l)+")=•:
PRINT BS;F(I):J=2

240:I=I+l
250:IF I=P END
255:GOTO 210
260: •c•: PAUSE BS: ff

LEFTS (BS,l)=•x•
INPUT "REVISION YALU
E="iXCI): GOTO 290

270:IF LEFTS (BS,l)="F"
INPUT "REVISION YALU
E="iF(I): GOTO 290

280:GOTO 250
290:IF J=l GOTO 230
291:GOTO 210
300:"D":N=0:T=0:S=0: FOR

I=0 TO P-1:X=X(I)
305:F=l: IF A=l LET F=F<

I)

310:N=N+F:T=T+F*X:S=S+F*
X*X: NE:X:T I

400:WAIT :X=T/N:Q=(S-N*X
253

*X)/(N-1):S=.fQ:
PRINT "TOTAL SUM="iT
: PRINT "MEAN VALUE=
..... ,. ,.x.

410: RIN "VARIANCE=•;Q:
~'.IN "STD. DEV.=•:
RIN S: END

643

MEMORY CONTENTS

A ✓ u
B$ ✓ V

C w
D X Average

E y

F ✓ z
G X(P-1) Data

H F(P-1) Data

I ✓
J Flag

K

L

M

N ✓
0

p Data number

Q Variance

R

s Standard deviation

T Total sum

254

Program Title: INTERSECTION BETWEEN CIRCLES AND STRAIGHT LINES

OVERVIEW

The points of intersection between circles and straight lines in the X-Y plane are found.

CONTENTS
The 2 points of intersection between a circle and a straight line are P and Q.

(Note) The angles are in degrees, minutes, and seconds and are to be input in the following way:

123.1423 = 123 degrees 14 minutes 23 seconds.

P,(X,, Y,)

____ _.___,_ __________ x

255

INSTRUCTIONS

1. If the straight line is determined by 2 points, @El CK] is used.

If the line is determined by 1 point and 1 direction angle, @El C[) is used.

2. After the data are input, the results are displayed.

EXAMPLE

X1 = -50
Y1= 0
X2 = 50 Xp = 0
Y2 = 100 Yp = 50
Xo = 50 XQ = 50
Yo= 50 YQ = 100
R 50
a = 45°

(Note) The coordinate values are accurate
up to 5 decimal places.

y P2

256

KEY OPERATION SEQUENCE

(when 2 points on the line are known)

Step No. Key Input Display Remarks

1 @)(D X0 = _

2 50 (ENTER) Y0 = _

3 50 (ENTER) R=

4 50 (ENTER) X1 = _

5 -50 (ENTER) Y1=_

6 0 (ENTER) X2 =_

7 50 (ENTER) Y2=_

8 100 (ENTER) P: 0.0000 49.9999 (xp,yp)

9 (ENTER) 0: 50.0000 100.0000 (XQ, YQ)

257

KEY OPERATION SEQUENCE

(when 1 point on the line and 1 direction angle are known)

Step No. Key Input Display Remarks

1 @® X0 =_

2 50 (ENTER) Y0 = _

3 50 (ENTER) R=_

4 50 (ENTER) X1 =_

5 -50 (ENTER) Y1 =_

6 0 (ENTER) A=

7 45 (ENTER) P: 0.0000 49.9999 (Xp, Ypl

8 (ENTER) Q: 50.0000 100.0000 (Xq, Yql

258

FLOWCHART
500

If 2 points are
known

500

500
W = -y'(X*X-Y*Y)

X=ACS (X/W)
K=W*SIN (X-H)

L=ACS(K/C) 510
M=H-90-L;N=H-90+L

X = 360- X

Subroutine for finding
the X-Y coordinates

50 RETURN

Display of X-Y
600 coordinates

150 Subroutine for
M=N finding the X-Y

coordinates

Subroutine for finding
the X-Y coordinates O=A+C*COSM

P= B+C*SINM

500 Display of X-Y
values of point 0 RETURN

H=X
90 END

X=A-D
Y=B-E

259

PROGRAM LIST
10: •A•: J=0: GOTO 30
20:•B•:J=l
30:DEGREE ·: INPUT "X0=

•;A,"Y0= •;B,•R= •;c
40:INPUT "Xl= •;D,"Yl=

50:IF J<>0 INPUT "A=•;
H:H= DEG H: GOTO 90

60:INPUT "X2= •;F,"Y2=

70:X=F-D:Y=G-E: GOSUB 5
00

80:H=X
90:X=A-D:Y=B-E: GOSUB 5

00
100:K=W* SIN (X-H)
110:L= ACS (K/C)
120:M=H-90-L:N=H-90+L
130:GOSUB 600
140:PRINT USING •tttttttttttt.

uttr; •p: •;o;p
150:M=N: GOSUB 600
160:PRINT •Q:•;o;p
170:END
500:W=f(X*X+Y*Y)
510:X= ACS (X/W): IF Y<0

LET X=360-X
520:RETURN
600:O=A+C* COS M:P=B+C*

SIN M: RETURN

335

MEMORY CONTENTS

A Xo u
B Yo V

C R w L

D x, X t.X, 0

E Y, y t:,.Y

F X2 z

G Y2

H ✓
I

J ✓
K h

L a
M Qp

N QQ

0 Xp, XQ

p Yp, YQ

Q

R

s
T

260

Program Title: NUMBER OF DAYS CALCULATION

OVERVIEW

How many days has it been since you were born?

This program is convenient for answering such questions. By setting a certain day, this program will output the number of days

that have passed since that day.

CONTENTS

[Instructions]

@El CD
BASE YEAR (ENTER)

MONTH (ENTER)

DAY (ENTER)

TARGET YEAR (ENTER)

MONTH (ENTER)

DAY (ENTER)

To end the program, type in @El W in place of the year.

[Example]

from 1976 year 10 month 5 day

to 1982 year 6 month 4 day : 2068 days

to 1985 year 1 month 1 day : 3010 days

261

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 C@(I) START YEAR=

2 1976 (ENTER) MONTH= Base date 1976 year 10 month 5 day input

3 10 (ENTER) DAY=

4 5 (ENTER) END YEAR=

5 1982 (ENTER) MONTH= Target date 1982 year 6 month 4 day input

6 6 (ENTER) DAY=

7 4 (ENTER) DAYS= 2068.

8 (ENTER) END YEAR=

9 1985 (ENTER) MONTH= Target date 1985 year 1 month 1 day input

10 1 (ENTER) DAY=

11 1 (ENTER) DAYS= 3010.

12 (ENTER) END YEAR=

13 @va:J >

262

FLOWCHART

Calculation of
"A" sum of days

20 500
y

X = 1-J
140 510

30
Number of days G =G + 1

690 520
50

I= INT(365.25* H)
+ INT (30.6*G) + I

530

70 I= I - INT(H/100)
+ INT(H/400) -

306 - 122

RETURN

100

120

263

PROGRAM LIST

20:INPUT •START YEAR=•;
R,"MONTH="iS,"DAY=•;
T

30:INPUT "END YEAR="iF,
"MONTH="iY,"DAY="iW

50:H=R
60:G=S:I=T
70:GQSUB 500
80:J=I

100:H=F
110:G=\/:I=W
120:GOSUB 500
130:X=I-J
140:WA!T: USING PRINT

"DAYS=",X
150:GQTO 30
500:IF G-3>=0 LET G=G+l:

GOTO 520
510:G=G+13:H=H-1
520:I= INT (365.25*H)+

INT (30.6*G)+I
530:I=I- INT (H/100)+

INT (H/400)-306-122:
RETURN

600: •z•: Er-ID

270

MEMORY CONTENTS

A u
B V Month of target date

C w Day of target date

D X Number of days

E y

F Year (after calculation) z
G .J
H .J
I .J
J .J
K

L

M

N

0

p

Q

R Start year

s Month of base date

T Day of base date

264

Program Title: TYPING PRACTICE

OVERVIEW

Ouick key operation!

How fast and correct is your typing?

If you practice with this program, it will make programming much easier for you. Improve your skill!

CONTENTS (such as calculation contents)

The number of characters (4 ~ 6) is randomly chosen.

The character arrangement (A~ Z) is done randomly.

The allotted time depends on the number of characters and the grade level.

3 is the shortest time allotment, while 1 is the longest.

INSTRUCTIONS

After the buzzer sounds, 4 to6 characters will be displayed. You are to type in the same characters within the allotted time.

If the are all correct, you get 10 points.

If more than half are correct, you get 5 points.

After the allotted time is over, the next problem is displayed. The allotted time depends on the grade, which has three levels

(1, 2, 3).

3 is the shortest time allotment, while 1 is the longest.

Point competition is done within the same grade category.

There are 10 problems, making the maximum score 100 points.

265

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @)(D GRADE (1, 2, 3) ? Grade input

2 1 (ENTER) AZBDC

3 CA) AZBDC A

4 CI) AZBDC AZ

YOUR - SCORE= 80
After the 10 questions are answered, the score is
displayed

YOUR SCORE IS BEST
If your score is higher than the high score, the
guidance is displayed

>

1 @w HIGH - SCORE= 80 When you want to play in the same grade

BWVS

2 C[)

YOUR - SCORE= 60

>

266

FLOWCHART

2

40

Depending on
rade and length

87

90

"A"

High score

Characters arranged
according to random

numbers

Series of problem
characters and input

character series

y

N
A$= A$+C$(E)

Character number
count

CD

"Z"

Grade

2

After the loop has
been processed

267

I
110~----~y-------,

Points are counted
depending on the number

of correct answers

150

160

END

PROGRAM LIST

10: ''Z": CLEAR IM B$(
5), C$(5): RAN OM

15:INPUT "GRADE(,2,3)?
•;u WAIT 0

17:IF CL=l)+CL=2)+(L=3)
<>1 THEN 15

18:GOTO 30
20: ''A'': WAIT 0:P=0:

PAUSE "HIGH-SCORE=";
:x:

30:FOR S=l TO 10
40:B= RND 4+2:Y$="":R=

INT CB/2)
50:FOR C=0 TO B-1:C$CC)

=•JI.,

60:D= RND 26:BSCC)=
CHR$ (Il+&40):Y$=Y$+
CHRS CD+&40): NEXT C
:As=••

70:BEEP 3:E=0: WAIT 30:

80:FOR W=l TO B•l0/L:
PRINTY;• •;AS:
IF E=B ET W=B•20/L:
GOTO 10

85: CS(E)= INKEYS : IF r
S(E)=•• THEN 100

87:AS=AS+CS(E)
90:E=E+l

100:NEXT W:Q=0
110: FOR W=0 TO B-1: IF B

S(W)=CSCW) LET Q=Q+l
120: NE)<:T w: IF Q<=R THEN

150
130:IF Q=B LET P=P+10:

GOTO 150
140:P=P+5
150:NEXT S: USING: BEEP

3: PAUSE "YOUR-SCORE

160:IF P)X LET X=P: WAIT
100: PRINT "YOUR sea
RE IS BEST"

170:END

475

268

MEMORY CONTENTS

A$,J u
B ,J V

C Loop counter w Loop counter

D ,J X High score

E ,J Y$

F z
G B$(5) ,J
H C$(5) ,J
I

J

K

L Grade

M

N

0

p Score

Q ,J
R ,J
s Loop counter

T

269

Program Title: SOFTLANDING GAME

OVERVIEW

This game involves landing a rocket, with only a limited amount of fuel, as softly as possible. The rocket is in free fall. The

engine is used to slow down the free-falling rocket. If ignition takes place too soon or too much fuel is used, then the rocket is

thrust back out into space and becomes dust around the planet.

If all the fuel is burned up, the rocket hits the planet and blows up.

The aim is to land the rocket as softly as possible by controlling the engines while watching how much fuel is burned.

CONTENTS
Gravity is set to be 5 m/(unit time) 2

•

If 5 units of fuel per a unit time are burnt, then gravity is offset.

Equations

H H0 + VO t + -½- at 2

V V0 +at

H height Ho: initial height
V speed Yo: initial speed
a gravitational acceleration Fo: initial fuel

V 2 = V/+2aH t time F fuel burned

H0 = 500, V0 = -50, F0 = 200 Yo: initial speed

The initial height, initial fuel level, and the wait time are stored in line 30 as data. By changing these values, the above variables
can be changed.

INSTRUCTIONS
1. It is started by pressing @ W . Press (QJ ~ C]J keys to adjust the amount of fuel used to land the rocket.

270

-
KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @)a] ***START***

Keys@ - C[)
2 designate fuel burned in H: 500 S: -50 F: 200 C: 0

unit time

C[) H: 452 S: -46 F: 191 C: 9

Repeat

(If successful) SUCCESS!!

FUEL LEFT: F ~ 15

(If failed) GOOD BYE!!

REPLAY (Y/N)? Wait for input on whether you wish to play again

CD Play again

CID > End

271

FLOWCHART

A
10

Initial setup

50
Read data

70
Screen display

80 y

90
200

SUCCESS!!

100 Fuel left

C"'A 210
130 y

C"' F
END

140

Calculation of the
rocket's height

and speed

272

PROGRAM UST
10:•A•: WAIT 50: CLEAR

: USING :s=-50:A=0:D

20:BEEP 3: PRINT• ***
START***"

30:DATA 'TIME=",50,"FUE
L=",200,"HEIGHT=",50
0

40:RESTORE
50:READ B$,W,B$,F,B$,H

F; • C: •; STR$ C
80:IF F<=0 GOTO 170
90:BEEP 1:D$= INKEY$

100:IF D$=•• LET C=A:
GOTO 130

110:C= VAL D$
120:A=C
130:IF C>F LET C=F
140:F=F-C:X=C-5:H=H+S+X/

2:S=S+X
150:IF H>0 GOTO 70
160:IF (ABS H(5)+(ABS

- -
S<5)=2 BEEP 5: PRINT
"SUCCESS 1 !": GOTO 18
0

170:BEEP 3: PRINT •GOOD
BYE 1 1 •: GOTO 190

180:WAIT 150: PRINT
USING "llttl•;•FUEL L
EFT :F="iF

190:WAIT 50: PRINT "REPL
AY (Y/N) ?':2$=
INKE'($

200:IF (2$="Y')+(Z$='N")
< >1 GOTO 190

210:IF Z$='Y' GOTO 10
220:END

438

273

MEMORY CONTENTS

A ✓ u
B$ ✓ V

C Fuel burned w Wait time

D$ Fuel burned X ✓
E y

F Initial fuel level, fuel left 2$ ✓
G

H Initial height, height

I

J

K

L

M

N

0

p

Q

R

s Speed

T

274

Program Title: MEMORY CHECKER

OVERVIEW
Three lines with a total of 18 characters will be displayed on the screen for approximately 5 seconds.

Your memory will be tested by how well you input the above line after it has disappeared.

CONTENTS
The following type of line will be displayed for approximately 5 seconds. There are 2 characters and 4 numbers in each set.

Character Number

****** ****** ******
Set 1 Set 2 Set 3

The 3 sets shown above are to be memorized and then input as answers.

The Computer will then analyze your answers and place you in one of the possible 7 categories.

Each set is split into 2 parts of former 3 and latter 3 characters, giving a total of 6 points when all the answers are correct.

275

Points Evaluation Message

0 IDIOT

1 BAD

2 AVERAGE

3 OK

4 GOOD!

5 * INTELLIGENT*

6 ** GENIUS**

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @)(A) MEMORY CHECK Title

Display of problem line (5 sec.)
2 **XXXX **XXXX **xxxx * ... character

X ... number

3 ANS.=_ Waiting for the input of set 1

4 (Example) (ENTER) ANS.=_ Waiting for the input of set 2
AB1234

276

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

5 **xxxx (ENTER) ANS.=_ Waiting for the input of set 3

6 **xxxx (ENTER) * *xxxx **xxxx **XXXX Display of the problem line (1.5 sec.)

7 **xxxx **xxxx **XXXX Display of the answer input

8 IDIOT

BAD

AVERAGE

OK display of category

GOOD!

INTELLIGENT

GENIUS

9 *REPLAY (Y/N)? Player input request

10 GJorQD (ENTER) If Y, go to step 2

> If N, END

277

FLOWCHART

"A"

200 Redisplay of the
(Subroutine 520)

20
answer input

Construction of the
problem line

210 Evaluation

150 of memory

Display of the
problem line (Subroutine 500)

(5 sec.) 300 Display of
category

160

Answer input
370

200

Display of the
input

200
'F

Redisplay of the (Subroutine 500)
END problem line

278

PROGRAM LIST

10:"A": USING: WAIT 20
0: PRINT "MEMORY CHE
CK•: CLEAR: RANDOM

20:DIM G$(6)*1,N$(10)*1
,V$(3)*3,X$(3)*6,Z$(
3)*3,Y$(3)*6

30:FOR I=l TO 9:N$(I)=
STR$ I: NEXT I:N$(10
)=•0·

50:FOR I=1 TO 6
60:J= RND 26:J=J+64
70:G$(I)= CHR$ (J):

NEXT I
80:FOR I=l TO 3
90:Y$(I)=• •

100:FOR J=l TO 3:K= RND
9

110:Y$(I)=Y$(I)+N$(K):
NEXT J

120:L= RND 9:J=(I-1)*2+1
130:A$(I)=G$(J)+G$(J+1)+

N$(L)
140:H$=Y$(I):A$(I+3)=

RIGHT$ (H$,3): NEXT

150:GOSUB 500
160:FOR I=l TO 3
170:INPUT • ANS. = •;x$

(I):X$(I)= LEFT$ (X$
(I),6)

180:Z$(I)= LEFT$ (X$(I),
3)

190:V$(I)= RIGHT$ (X$(I)
,3): NEXT I

200:GOSUB 520: GOSUB 500
: GOSUB 520

210:N=0
220:FOR I=l TO 3
230:IF A$(I)=Z$(I) LET N

=N+l
240:IF A$(I+3)=V$(I) LET

N=N+l
250:NEXT I
260:N=N+l
270:WAIT 150: ON N GOTO

300,310,320,330,340,
350,360

300:BEEP 1: PRINT• IDI
OT": GOTO 370

310:BEEP 1: PRINT• BAD
•: GOTO 370

320:BEEP 2: PRINT• AVE
RAGE": GOTO 370

330:BEEP 2: PRINT• OK
•: GOTO 370

340:BEEP 3: PRINT• GO
ODI•: GOTO 370

350:BEEP 4: PRINT"* INT
ELLIGENT *": GOTO 37
0

279

360:BEEP 5: PRINT "**GEN
IUS**"

370:W$= 99
: BEEP 1: INPUT

"* REPLAY (Y/N)? •;
W$

380:IF W$="N" THEN 600
390:IF W$="Y" THEN 50
395:GOTO 370
400:GOTO 370
500:WAIT 300: BEEP 2:

PRINT A$(1)iA$(4)j•
•; A$(2H A$(5H •

•;A${3);A$(6)
510: RETURN
520:WAIT 80: BEEP 1:

PRINT USING"&&&&&&•
iX$(1)j USING ;•
; USING "&&&&&&•;X$(
2)i USING ;• •;
USING "&&&&&&"iX$C3)

525:USING
530:RETURN
600:END

891

MEMORY CONTENTS

A$ u
B$ V

C$ 3 columns of characters W$ Input for REPLAY

D$ X

E$ y

F$ z
G G$(6)*1 Characters (1 ~ 6)

H$.J N$(10l* 1 Number table (1 ~ 10)

I Index V$(3)*3 3 columns after answering (1 ~ 3)

J Random number generation X$(3)*6 Work (1 ~ 3)

K Y$(3)*6 Work (1 ~ 3)

L Random number generation Z$(3)*3 3 columns before answering (1 ~ 3)

M

N Counter

0

p

Q

R

s
T

280

Program Title: BUGHUNT

OVERVIEW
This is a game involving a man chasing after a bug.

CONTENTS
The bug moves according to random numbers.

The man chases the bug and kills it. W

The man moves by using the GJ + (§J keys. (INKEY$ is used)

CD
Each time the man moves one space, so does the bug. (Sometimes the bug will

stay in the same place.)

Initially, the man is in position (0, 0).

The bug is placed at a position that was chosen at random.

Hints are displayed as distance.

The distance is displayed by the ABS (X-a) + ABS (Y-b) equation.

The initial energy level is 100. This decreases by 1 with time.
Each time that a bug is killed, the energy increases by 5, 10, or 15. (The

amount is chosen randomly.)
The score is determined by how many bugs were killed when the energy level

reaches 0.
(The position of the bug may "warp" when cornered.)
The program can be started by either pressing RUN (ENTER) or @ CI] .

281

9

8

7

6

5

4

3

2

1

0

y

~
<

0 1 2 3 4 5 6

Position of the man (X, Y)

Position of the bug (a, b)

X

7 8 9

Concerning the display (Small characters are actual values)

(x, y) DISTANCE = Q E = e

Present position Hint Remaining energy
(X coordinate, Y coordinate) (distance)

• Each time the man moves the display changes

Bug is caught

HIT! HIT!

BANG! BANG!

SCORE t ENERGY

Concerning the BEEP sound

e

* Hint: When the distance is 1 the BEEP goes off 3 times
2 2
3

282

* If the distance is greater than 3 no BEEP is given.

* When the bug is caught, the BEEP goes off 5 times.

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @:@CA) (0, 0) DISTANCE= 5 E = 100

8 (0, 1) DISTANCE= 4 E = 99

6 (1, 1) DISTANCE= 2 E = 98 2 BEEPs

8 HIT! HIT! 5 BEEPs

BANG! BANG!

SCORE 1 ENERGY 108

28~

FLOWCHART

"A"

Initial setting
RANDOM

X=0: Y=0: E=100
T=0:S=0:F=100

G)1-------->.I
Setting of bug position

A= RND9
B = RND9

@>-'=-----=-------_-~~----=---_j

Distance calculation
L=ABS(X-A)+ABS(Y-B)

Judge from the distance
L = 1 BEEP 3

2 2
3 1

(X, Y): L: E display

®

y

@)

®
Readin 2, 4, 6 or 8:
INKEY$ + G$

G$ is used to move the
man. Time spent

S = S+1

* @ 4

284

3

Energy calculation
E = F-(S/10)

The bug is moved
by random numbers

Bug goes into "warp"
BEEPing 3 times

CD

Score display
GAME OVER

END

4

HIT HIT
BANG BANG

Points and energy
added

Score displayed

G)

PROGRAM LIST

10: 9 A9
: RANDOM: WAIT 2

50: PRINT"** BUGHUN
T GAME•••: BEEP 3

20=::::~::=E=~:F=~:

30:A= RND 9:B= RND 9
40:L= ABS CX-A)+ ABS CY

-B)
50:I~ X=A AND Y=B GOTO

400
10t1: IF l =~ BE!::P 3
110:IF L=2 B~EP 2
120:IF L=3 BEEP 1
130:wAIT 50: PRINT •c•;

STRS (X);•,•; STRS C
Y);") DISTANCE=•;
STRS cu;• E=•; STRS
(E)

150:S=S+l:E=F- INT (S/2)
153:IF E<=0 THEN 500
155:GS= INKEY$: IF G$="

• GOTO 130
157:BEEP 1
160: IF G$="2" Lt.; Y=Y-1:

GOTO 210
170:IF G$="4" LET X=X-1:

GOTO 210

180:IF GS="6" LET X=X+l:
;_;o,o 210

:90:IF G$="8" LET Y=Y+l:
GOTO 210

200:GOTO 150
210:IF X<0 LET X=0: GOTO

150
220:IF Y(0 Lt.: Y=0: GOTO

150
230:IF X)9 LET X=9: GOTO

150
240:IF Y>9 LET Y=9: GOTO

150
250:IF X=A AND Y=B GOTO

400
260:E=F- INT (S/2)
270:IF E<=0 GOTO 500
280:R= RND 5
290:IF R=l LET B=B-1:

GOTO 340
300:IF R=2 LET A=A-1:

GOTO 340
310:IF R=3 LET A=A+l:

GOTO 340
320:IF R=4 LET B=B+l:

GOTO 340
340:IF A<0 OR A)9 GOTO 3

70
285

350:IF B(0 OR 8)9 GOTO 3
70

360:GOTO 40
370:BEEP 4: PAUSE"*** W

ARP••••: GOTO 30
400:PAUSE ''HITI HITI"
410:BEEP 5
420: PAUSE • BANG I BANG 1 •

430:T=T+l:C= RND 3•5:F=F
+C

435:E=F- INT (S/2)
440:WAIT 100: PRINT ·sco

RE •;T;• ENERGY •;E
450:GOT 30
500:WAI : PRINT "SCORE

'.' ! :p1 1) ; ,., :i<C,AME

1]1,/E I i * '.'

732

MEMORY CONTENTS

A Position of bug X coordinate u

B Position of bug Y coordinate V

C Amount of energy added w
D X Man position X coordinate

E Remaining energy y Man position Y coordinate

F Energy level z

G$ Key read in

H

I

J

K

L Distance between bug and man

M

N

0

p

Q

R Size of bug movement

s Time spent

T Score

286

Program Title: DOUBLE ROTATION

OVERVIEW
Quickly put in order A, B, C • • • •

This is a game that arranges randomly placed characters (A~ J) in alphabetical order. When the letters are arranged in the right
order, a score is displayed. The trick is to attack from the best place.
The sooner the characters are arranged, the better.
It is fun to race with 2 or 3 of your friends.

INSTRUCTIONS
1. After the program is initiated, by pressing ~ CD , "DOUBLE ROTATION" is displayed. A random sequence of charac­

ters (A~ J) is then displayed.

2. The space in between the characters is taken as the breakpoints (1 ~ 9) where the numbers are placed. Inputting a break
number causes the characters on each side of the breakpoint to be rotated by moving them to the far ends of the row.

3. After the characters have been placed in order, the number of moves required is displayed as the score. The lower the score
the better.

EXAMPLE
In (1), 4 is input; "F" and "I" move to each side, changing the configura­
tion to (2). If 1 is now input, the "E" moves to the far right; but "F"
stays in its place because it is already in the far left position, becoming
configuration (3).

287

1 2 3 4 5 6 7 8 9

(1) I E I H I B I F I
.f j

[A[CIJ [D[GI
1'

1 2 3 4 5 6 7 8 9

(2) [} I E I H I 8 I A I C I J I D I G I I I
I ¥

12 3456 789

(3) I F I H I 8 I A I C I J I D I G I I E I

KEY OPERATION SEQUENCE

Step No. Key Input Display Remarks

1 @)CI) DOUBLE ROTATION

A-J Random sequence display

2 CD- C[) Numbers between 1 and 9 are selected and input

Repeated input

ABCDEFGHIJ

GAME END

YOUR SCORE 35

>

Does player want to play using the same
beginning random alphabets?

1 @)(ID A- J

Sameas@_)CAJ in succession

288

FLOWCHART

10

70

110

170

"A"

Initial setup

Random number
generated

Alphabet is stored
depending on

random numbers

A sequence of
alphabets is

displayed

INKEY$
D$

400

"B"
210

300

289

Sequence of letters
is shifted according

to the input numbers

y

N

310

(

Game over
score

END)

PROGRAM LIST

10: ''A'': CLEAR : WAIT 50
: RANDOM: DIM BS(4)

20:PAUSE 9 DOUBLE ROTATI
ON•

30:BS(0)=•ABCDEFGHIJ•
40: BS(1)='' •

50:A=0
60:FOR I=l TO 10
70:R= RND 10
80:S=2"(R-1)
85:B=S AND A
90:IF B<>0 GOTO 70

100:A=A ORS
110:BS(l)=BS(l)+ MIDS (B

S(0),R,1): NEXT I
20:BS(2)=BS(l)
30:N=0
50:BEEP 1
70:Ds=••: PRINT BS(2):D

S= INKEYS
80:C= 'v'AL DS
90:IF C=0 GOTO 170
10:BS(3)= LEFTS <BS(2),

C)

220:BS(4)= RIGHTS <BS(2)
, 10-C)

240:IF C=1 GOTO 260
250:BS(3)= RIGHTS (BS(3)

,1)+ LEFTS (BS(3),C-
1)

260:IF C=9 GOTO 280
270:BS(4)= RIGHTS (BS(4)

,9-C)+ LEFTS <BSC4),
1)

280:BS(2)=BS(3)+BS(4)
290:N=N+l
300:IF BS(2><>BS(0) GOTO

150
310:BEEP 5: PAUSE •GAME

END"
320:WAIT 200: PRINT

USING •1111•;vYOUR S
CORE•;N

330:END
400:•3•: WAIT 50: GOTO 1

20

471

290

MEMORY CONTENTS

A .J u
B .J V

C .J w
D$ Input key X

E y

F z

G B$(4) Alphabet sequences

H

I .J
J

K

L

M

N Score

0

p

Q

R Random numbers

s .J
T

291

ADDENDUM
Cat. No. 26-3590

1. With the PC-3, you can use an array as a first element for a two dimensional array.
An array as a second element will not work.
Example:
B (C (0), 5) - - OK
B (5, C (0)) - - NO
There is one exception. If the inner array is "A()", it can be used as the second element
of the two dimensional array.

2. When the decimal places as set by the statement "USING" and the number to be dis­
played or printed becomes 0, the last 0 is dropped.
Example: If decimal places are set with USING "# #. # ":

If A== 0.1, 0.1 will be displayed
If A== 0.01, 0 will be displayed instead of 0.0

One way you can get around this result is to use a program such as the following:
111 USING "##.#"
2(1 IF A<ll.1 THEN PRINT USING"##.##" ;A/10: GOTO 40
39 PRINT A
411 ------

3. In the Reserve mode, do not press !ENTER! whenever "TO" is used in a character string
(GOTO is ok). The contents of the Reserve mode will change if !ENTER) is pressed.

ftad1olbaek
Fort Worth, TX 76102

292
-"- -

-- - - - - - _,_ - - __ ,--.

IMPORTANT INFORMATION

"This equipment generates and uses radio frequency energy and if not installed and used properly, that is, in strict
accordance with the manufacturer's instructions, may cause interference to radio and television reception. It has
been type tested and found to comply with the limits for a Class B computing device in accordance with the specifi­
cations in Subpart J of Part 15 of FCC Rules, which are designed to provide reasonable protection against such
interference in a residential installation. However, there is no guarantee that interference will not occur in a par­
ticular installation. If this equipment does cause interference to radio or television reception, which can be deter­
mined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more
of the following measures:
• Reorient the receiving antenna
• relocate the computer with respect to the receiver
• move the computer away from the receiver
• plug the computer into a different outlet so that computer and receiver are on different branch circuits.
If necessary, the user should consult the dealer or an experienced radio/television technician for additional sug­
gestions. The user may find the following booklet prepared by the Federal Communications Commission helpful:
"How to Identify and Resolve Radio-TV interference Problems'. This booklet is available from the US Government
Printing Office, Washington, D.C., 20402, Stock No. 004-000-00345-4"

3A3

- - -

CUSTOM MANUFACTURED FOR RADIO SHACK, A DIVISION OF TANDY CORPORATION

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA

91 KURRAJONG ROAD
MOUNT ORUITT, N. S. W. 2770

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U. K

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WSlO 7JN

PRINTED IN JAPAN

